EMC TEST REPORT

For

JFIA Machinery (ShangHai) Co.,Ltd.

Edge bander

Model No.: M3121

Additional Model No.:450DL, 460ABS, 468SL, 480AHP, 628DP, JC102-LF, M3221, SKL810, EKL760, CKL350, JC102, 633DJ

Prepared for : JFIA Machinery (ShangHai) Co.,Ltd.

Address : No. 1458, Hangtang Road, Jinhui town, Fengxian District,

Shanghai.

Prepared by : Shenzhen AOCE Electronic Technology Service Co., Ltd. Address : Room 202, 2nd Floor, No.12th Building of Xinhe Tongfuyu

Industrial Park, Fuhai Street, Baoan District, Shenzhen,

Guangdong, China

Tel : (+86)755-85277785
Fax : (+86)755-23705230
Web : www.aoc-cert.com

Mail : postmaster@aoc-cert.com

Date of receipt of test sample : July 1, 2025

Number of tested samples : 1

Serial number : Prototype

Date of Test : July 1, 2025 - July 8, 2025

Date of Report : July 8, 2025

EMC TEST REPORT EN IEC 61000-6-3:2021

Emission standard for residential, commercial and light-industrial environments EN IEC 61000-6-1:2019

Immunity for residential, commercial and light-industrial environments

Report Reference No:	AOC251029102E
Date Of Issue:	July 8, 2025
Testing Laboratory Name:	Shenzhen AOCE Electronic Technology Service Co., Ltd.
Address:	Room 202, 2nd Floor, No.12th Building of Xinhe Tongfuyu Industrial Park, Fuhai Street, Baoan District, Shenzhen, Guangdong, China
Testing Location/ Procedure:	~
	Partial application of Harmonised standards
	Other standard testing method
Applicant's Name	JFIA Machinery (ShangHai) Co.,Ltd.
Address:	No. 1458, Hangtang Road, Jinhui town, Fengxian District, Shanghai.
Test Specification:	
Standard:	EN IEC 61000-6-3:2021
	EN IEC 61000-3-2:2019+A1:2021
	EN 61000-3-3:2013+A1:2019+A2:2021+AC:2022
	EN IEC 61000-6-1:2019
	EN IEC 61000-6-2:2019 EN IEC 61000-6-4:2019
Test Report Form No:	
TRF Originator:	Shenzhen AOCE Electronic Technology Service Co., Ltd.
Master TRF:	
This publication may be reproduce	hnology Service Co., Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long as the nology Service Co., Ltd. is acknowledged as copyright owner and
Test Item Description:	Edge bander
Trade Mark:	N/A
Model/ Type Reference:	M3121
Ratings:	AC 380V, 50Hz, 41kW
Result:	Positive
Compiled by:	Supervised by: Approved by:

Compiled by: Supervised by: Approved by:

David Lik

Kevin Huang

Jackson Fang

David Liu/ File administrators

Kevin Huang/ Technique principal

Jackson Fang/ Manager

July 8, 2025

Date of issue

Test Report No.: AOC251029102E

EMC -- TEST REPORT

Test Result according to the standards on page 6: **Positive**

The test report merely corresponds to the test sample.

Telephone.....: / Fax.....: /

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1.Description of Standards and Results	6
1.2.Description of Performance Criteria	7
2. GENERAL INFORMATION	8
2.1.Description of Device (EUT)	8
2.2.Description of Test Facility	
2.3. Statement of the measurement uncertainty	
2.4.Measurement Uncertainty	9
3. MEASURING DEVICES AND TEST EQUIPMENT	
3.1.Conducted Disturbance	
3.2.Disturbance Power	
3.3.Radiated Electromagnetic Disturbance	
3.4.Radiated Disturbance (Electric Field)	
3.5.Harmonic Current	
3.6.Voltage fluctuation and Flicker	
3.7.Electrostatic Discharge	
3.8.RF Field Strength Susceptibility	
3.9.Electrical Fast Transient/Burst	11
3.10.Surge	11
3.11.Conducted Susceptibility	
3.12.Power Frequency Magnetic Field Susceptibility	12
3.13.Voltage Dips	12
3.14.Voltage Short Interruptions	12
4. RADIATED EMISSION MEASUREMENT	13
4.1.Block Diagram of Test Setup	13
4.2.Test Standard	13
4.3.Radiated Emission Limits	13
4.4.EUT Configuration on Test	14
4.5.Operating Condition of EUT	14
4.6.Test Procedure	14
4.7.Test Results	14
5. ELECTROSTATIC DISCHARGE TEST	16
5.1.Block Diagram of Test Setup	16
5.2.Test Standard	
5.3. Severity Levels and Performance Criterion	16
5.4.EUT Configuration on Test	
5.5.Operating Condition of EUT	17
5.6.Test Procedure	17
5.7.Test Results	17
6. RF FIELD STRENGTH SUSCEPTIBILITY TEST	19

6.1.Block Diagram of Test Setup	19
6.2.Test Standard	19
6.3. Severity Levels and Performance Criterion	19
6.4.EUT Configuration on Test	
6.5.Operating Condition of EUT	20
6.6.Test Procedure	20
6.7.Test Results	20
7. MAGNETIC FIELD IMMUNITY TEST	22
7.1.Block Diagram of Test Setup	22
7.2.Test Standard	
7.3.Severity Levels and Performance Criterion	22
7.4.EUT Configuration on Test	
7.5.Operating Condition of EUT	
7.6.Test Procedure	
7.7.Test Results	
8. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	25

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMICOLON (EN IEO CACCO O C COCA)						
	-WIS	SION (EN IEC 61000-6-3:2021)		1.1		
Description of Test Item		Standard		Limits	Results	
Conducted disturbance at mains terminals		EN 55032: 2015+A11:2020		Class B	N/A	
Conducted disturbance at telecommunication port		EN 55032: 2015+A11:2020		Class B	N/A	
Radiated disturbance		EN 55032: 2015+A11:2020		Class B	PASS	
Harmonic current emissions		EN IEC 61000-3-2:2019+A1:2021		Class A	PASS	
Voltage fluctuations & flicker	EN	61000-3-3:2013+A1:2019+A2:20 AC:2022	21+		PASS	
IMMUNITY (EN IEC 61000-6-1:2019)						
Description of Test Item		Rasic Standard		formance Criteria	Results	
Electrostatic discharge (ESD)		EN 61000-4-2:2009	В		PASS	
Radio-frequency, Continuous radiated disturbance		EN 61000-4-3:2020		А	PASS	
Electrical fast transient (EFT)		EN 61000-4-4:2012		В	N/A	
Surge (Input a.c. power ports)		- EN 61000-4-5: 2014+A1:2017		В	N/A	
Surge (Telecommunication ports))	211 01000 1 0. 2011///1.2017		В	N/A	
Radio-frequency, Continuous conducted disturbance	е	EN 61000-4-6: 2014+AC:2015		Α	N/A	
Power frequency magnetic field		EN 61000-4-8: 2010		Α	PASS	
Voltage dips, >95% reduction		EN 61000-4-11:2020+AC:2020		С	N/A	
Voltage dips, 30% reduction				С	N/A	
Voltage interruptions				С	N/A	
N/A is an abbreviation for Not Ap	plica	able.				

1.2.Description of Performance Criteria

General Performance Criteria

Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following:

- essential operational modes and states;
- tests of all peripheral access (hard disks, floppy disks, printers, keyboard, mouse, etc.);
- quality of software execution;
- quality of data display and transmission;
- quality of speech transmission.

1.2.1.Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacture when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.2.Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacture, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operation state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.3.Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacture's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be loss.

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

EUT : Edge bander

Model Number : M3121

Power Supply : AC 380V, 50Hz, 41kW

2.2.Description of Test Facility EMC Lab.

2.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AOC quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.4. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty		30MHz~200MHz	±2.96dB	(1)
		200MHz~1000MHz	±3.10dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. MEASURING DEVICES AND TEST EQUIPMENT

3.1.Conducted Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2025/04/24
2	10dB Attenuator	SCHWARZBECK	OSPAM236	9729	2025/04/24
3	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2025/04/24
4	EMI Test Software	AUDIX	E3	N/A	2025/04/24

3.2.Disturbance Power

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2025/04/24
2	Absorbing clamp	ROHDE & SCHWARZ	MDS 21	4033	2025/04/24
3	EMI Test Software	AUDIX	E3	N/A	2025/04/24
4	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2025/04/24

3.3.Radiated Electromagnetic Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	1011423	2025/04/24
2	Triple-loop Antenna	EVERFINE	LLA-2	11050003	2025/04/24
3	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2025/04/24
4	EMI Test Software	AUDIX	E3	N/A	2025/04/24

3.4. Radiated Disturbance (Electric Field)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2025/04/24
2	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2025/04/24
3	Log per Antenna	SCHWARZBECK	VULB9163	9163-470	2025/04/24
4	EMI Test Software	AUDIX	E3	N/A	2025/04/24
5	Positioning Controller	MF	MF-7082	/	2025/04/24
6	Horn Antenna	ETS.LINDGREN	3115	00034771	2025/04/24
7	Spectrum Analyzer	Agilent	E4407B	MY41440754	2025/04/24

3.5. Harmonic Current

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power Analyzer Test System	Voltech	PM6000	20000670053	2025/04/24

3.6. Voltage fluctuation and Flicker

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power Analyzer Test System	Voltech	PM6000	20000670053	2025/04/24

3.7. Electrostatic Discharge

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	ESD Simulator	KIKUSUI	KC001311	KES4021	2025/04/24

3.8.RF Field Strength Susceptibility

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	SIGNAL GENERATOR	HP	8648A	625U00573	2025/04/24
2	Amplifier	AR	500A100	17034	2025/04/24
3	Amplifier	AR	100W/1000M1	17028	2025/04/24
4	Isotropic Field Monitor	AR	FM2000	16829	2025/04/24
5	Isotropic Field Probe	AR	FP2000	16755	2025/04/24
6	Bi-conic Antenna	EMCO	3108	9507-2534	2025/04/24
7	By-log-periodic Antenna	AR	AT1080	16812	2025/04/24
8	EMS Test Software	ROHDE & SCHWARZ	ESK1	N/A	2025/04/24

3.9. Electrical Fast Transient/Burst

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Electrical fast transient(EFT)generator	3CTEST	EFT-4021	EC0461044	2025/04/24
2	Coupling Clamp	3CTEST	EFTC	EC0441098	2025/04/24

3.10.Surge

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Surge test system	3CTEST	SG5006G EC5581070		2025/04/24
2	Coupling/decoupling network	3CTEST	SGN-5010G	CS5591033	2025/04/24

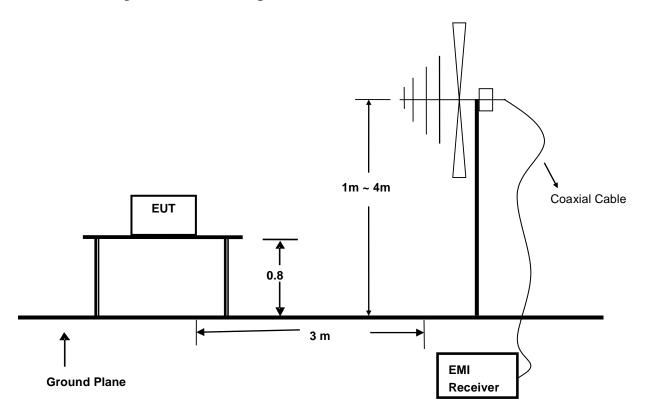
3.11.Conducted Susceptibility

Item	Test Equipment Manufacturer Model		Model No.	Serial No.	Last Cal.
1	Simulator	Simulator EMTEST CIT-10 A12		A126A1195	2025/04/24
2	CDN	EMTEST	CDN-M2	A2210177	2025/04/24
3	CDN	EMTEST	CDN-M3	A2210177	2025/04/24
4	Attenuator	EMTEST	ATT6	50FP-006-H3B	2025/04/24

3.12. Power Frequency Magnetic Field Susceptibility

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power frequency mag-field generator System	EVERFINE	EMS61000-8K	906003	2025/04/24

3.13. Voltage Dips


Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2025/04/24

3.14. Voltage Short Interruptions

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2025/04/24

4. RADIATED EMISSION MEASUREMENT

4.1.Block Diagram of Test Setup

4.2.Test Standard

EN IEC 61000-6-3:2021 (EN 55032: 2015+A11: 2020)

4.3. Radiated Emission Limits

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT
(MHz)	(Meters)	$(dB\mu V/m)$
30 ~ 230	3	40
230 ~ 1000	3	47

Note: (1) The smaller limit shall apply at the combination point between two frequency bands.

(2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

4.4.EUT Configuration on Test

The EN 55022 regulations test method must be used to find the maximum emission during radiated emission measurement.

4.5. Operating Condition of EUT

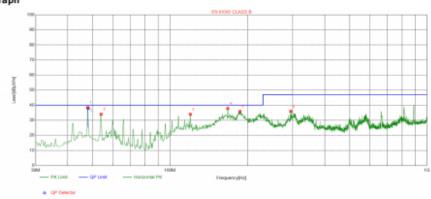
- 4.5.1 Turn on the power.
- 4.5.2 After that, let the EUT work in test mode (ON) and measure it.

4.6.Test Procedure

The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 10 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna (calibrated by Dipole Antenna) is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

The bandwidth of the Receiver is set at 120kHz.

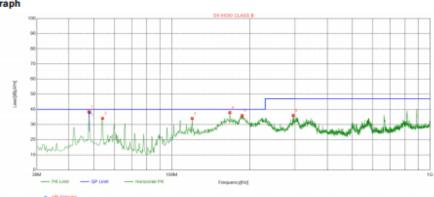
The frequency range from 30MHz to 1000MHz is investigated.


4.7.Test Results

PASS.

The test result please refer to the next page.

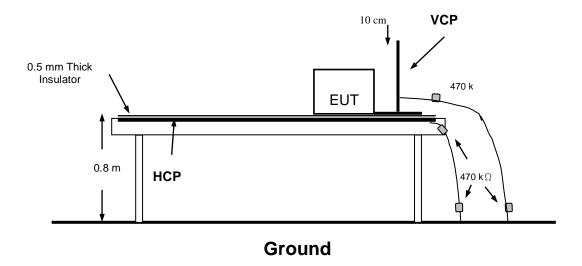
Model No.	M3121	Test Mode	ON
Environmental Conditions	24°C / 56% RH	Detector Function	Quasi-peak
Pol	Vertical	Distance	3m
Test Engineer	Liang	Test Date	July 8, 2025



Suspected List

Suspe	Suspected List										
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity		
	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[*]			
1	41.9673	-14.19	48.44	34.25	40.00	5.75	100	38	Vertical		
2	47.7893	-13.65	49.84	36.19	40.00	3.81	100	43	Vertical		
3	53.9346	-14.24	46.97	32.73	40.00	7.27	100	58	Vertical		
4	65.9020	-16.64	46.01	29.37	40.00	10.63	100	51	Vertical		
5	119.9166	-17.09	47.58	30.49	40.00	9.51	100	169	Vertical		
6	155.4952	-18.54	49.33	30.79	40.00	9.21	100	350	Vertical		

Model No.	M3121	Test Mode	ON
Environmental Conditions	24℃/ 56% RH	Detector Function	Quasi-peak
Pol	Horizontal	Distance	3m
Test Engineer	Liang	Test Date	July 8, 2025



Suspected List

Suspe	Suspected List										
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [*]	Polarity		
1	47.7893	-13.65	52.06	38.41	40.00	1.59	100	337	Horizontal		
2	53.9346	-14.24	48.31	34.07	40.00	5.93	100	358	Horizontal		
3	119.9166	-17.09	51.07	33.98	40.00	6.02	100	22	Horizontal		
4	167.7859	-17.50	55.39	37.89	40.00	2.11	100	17	Horizontal		
5	187.1924	-16.25	52.19	35.94	40.00	4.06	100	10	Horizontal		
6	295.2217	-12.79	48.77	35.98	47.00	11.02	100	25	Horizontal		

5. ELECTROSTATIC DISCHARGE TEST

5.1.Block Diagram of Test Setup

5.2.Test Standard

EN IEC 61000-6-1:2019 (EN 61000-4-2: 2009, Severity Level: Air Discharge: Level 3, \pm 8KV Contact Discharge: Level 2, \pm 4KV)

5.3. Severity Levels and Performance Criterion

5.3.1.Severity level

Level	Test Voltage	Test Voltage	
	Contact Discharge (KV)	Air Discharge (KV)	
1.	±2	±2	
2.	±4	±4	
3.	±6	±8	
4.	±8	±15	
X	Special	Special	

5.3.2.Performance criterion: **B**

5.4.EUT Configuration on Test

The configuration of EUT is listed in Section 3.7.

5.5. Operating Condition of EUT

- 5.5.1. Setup the EUT as shown in Section 5.1.
- 5.5.2. Turn on the power of all equipments.
- 5.5.3.Let the EUT work in test mode (ON) and measure it.

5.6.Test Procedure

5.6.1.Air Discharge

This test is done on a non-conductive surfaces. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

Because the case of the EUT is metal surface, so it does not need to be tested.

5.6.2.Contact Discharge

All the procedure shall be same as Section 5.6.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

5.6.3.Indirect Discharge For Horizontal Coupling Plane

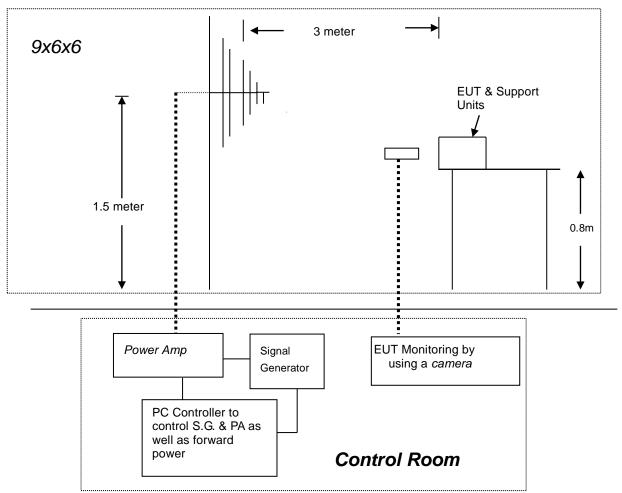
At least 20 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

5.6.4.Indirect Discharge For Vertical Coupling Plane

At least 20 single discharge shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

5.7.Test Results

PASS.


Please refer to the following page.

F	Electrostatic Discharger Test Results				
Standard	☐ IEC 61000-4-2 ☐ EN 61000-4-2	2			
Applicant	JFIA Machinery (ShangHai) Co.,Ltd.				
EUT	Edge bander	Temperature	26℃		
M/N	M3121	Humidity	51%		
Criterion	В	Pressure	1021mbar		
Test Mode ON Test Engineer Liang					
	Air Discharge				
Tast Lavals Pasults					

1 cst Wout					st Engineer	
	Air Discharge					
		Test Levels			Resu	ılts
Test Points	± 2KV	± 4KV	± 8KV	Pass	Fail	Performance Criterion
Front	\square	\boxtimes	\boxtimes	\boxtimes		$\Box \mathbf{A} \boxtimes \mathbf{B}$
Back	\square	\boxtimes	\square	\square		$\Box \mathbf{A} \boxtimes \mathbf{B}$
Left	\boxtimes	\boxtimes	\boxtimes	\boxtimes		$\Box \mathbf{A} \boxtimes \mathbf{B}$
Right		\boxtimes	\boxtimes	\boxtimes		$\Box \mathbf{A} \boxtimes \mathbf{B}$
Тор		\boxtimes	\square	\boxtimes		\Box A \boxtimes B
Bottom	\boxtimes	\boxtimes				$\square A \boxtimes B$
			tact Dischar	rge		
		Test Levels			Resu	
Test Points	± 2 KV		±4 KV	Pass	Fail	Performance Criterion
Front			\boxtimes	\boxtimes		$\square A \boxtimes B$
Back	\square		\boxtimes	\square		$\Box A \boxtimes B$
Left			\boxtimes	\boxtimes		\Box A \boxtimes B
Right			\boxtimes			$\square A \boxtimes B$
Top			\boxtimes			\Box A \boxtimes B
Bottom	\boxtimes		\boxtimes			\Box A \boxtimes B
	Disc		lorizontal C	oupling P		
		Test Levels		Results		
Side of EUT	± 2 KV		± 4 KV	Pass	Fail	Performance Criterion
Front			\boxtimes			$\Box \mathbf{A} \boxtimes \mathbf{B}$
Back	\boxtimes		\boxtimes			$\Box \mathbf{A} \boxtimes \mathbf{B}$
Left			\boxtimes	\square		$\Box A \boxtimes B$
Right	\boxtimes		\boxtimes	\boxtimes		$\square A \boxtimes B$
Discharge To Vertical Coupling Plane						
		Test Levels		Results		
Side of EUT	± 2 KV		± 4 KV	Pass	Fail	Performance Criterion
Front			\boxtimes			\Box A \boxtimes B
Back	\boxtimes		\boxtimes			\Box A \boxtimes B
Left	\boxtimes		\boxtimes			\Box A \boxtimes B
Right	\boxtimes		\boxtimes			$\square A \boxtimes B$

6. RF FIELD STRENGTH SUSCEPTIBILITY TEST

6.1.Block Diagram of Test Setup

6.2.Test Standard

EN IEC 61000-6-1:2019 (EN 61000-4-3:2020, Severity Level: 2, 3V/m)

6.3. Severity Levels and Performance Criterion

6.3.1. Severity level

Level	Field Strength (V/m)
1	1
2	3
3	10
X	Special

6.3.2.Performance criterion: A

6.4.EUT Configuration on Test

The configuration of EUT are listed in Section 2.1.

6.5. Operating Condition of EUT

- 6.5.1. Setup the EUT as shown in Section 6.1.
- 6.5.2. Turn on the power of all equipments.
- 6.5.3.Let the EUT work in test mode (On) and measure it.

6.6.Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

Condition of Test		Remarks
1.	Fielded Strength	3 V/m (Severity Level 2)
2.	Radiated Signal	Unmodulated
3.	Scanning Frequency	80 - 1000 MHz
4.	Dwell time of radiated	0.0015 decade/s
5.	Waiting Time	3 Sec.

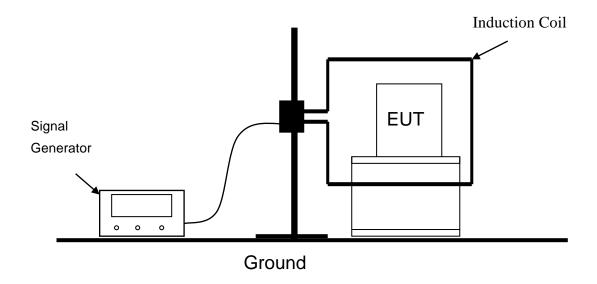
6.7.Test Results

PASS.

Please refer to the following page.

RF Field Strength Susceptibility Test Results						
Standard	□ IEC 61000-4-	-3 ☑ EN 610	00-4-3			
Applicant	JFIA Machinery	(ShangHai) Co.,	Ltd.			
EUT	Edge bander	Edge bander Temperature 26°C				
M/N	M3121			Humidity	51%	
Field Strength	3 V/m			Criterion	A	
Test Mode	ON Test Engineer Liang					
Frequency Range	80 MHz to 1000 MHz					
Modulation	□None	□ Pulse	☑ A]	M 1KHz 80%		
Steps		1%				

	Horizontal	Vertical
Front	PASS	PASS
Right	PASS	PASS
Rear	PASS	PASS
Left	PASS	PASS


Test Equipment:

- 1. Signal Generator: 2031 (MARCONI)
- 2. Power Amplifier: 500A100 & 100W/1000M1 (A&R)
- 3. Power Antenna: 3108 (EMCO) & AT1080 (A&R)
- 4. Field Monitor: FM2000 (A&R)

Note:

7. MAGNETIC FIELD IMMUNITY TEST

7.1.Block Diagram of Test Setup

7.2.Test Standard

EN IEC 61000-6-1:2019 (EN 61000-4-8: 2010, Severity Level 2: 3A/m)

7.3. Severity Levels and Performance Criterion

7.3.1.Severity level

30 (CII C) 10 (CI	
Level	Magnetic Field Strength (A/m)
1.	1
2.	3
3.	10
4.	30
5.	100
X	Special

7.3.2.Performance criterion: A

7.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.12.

7.5. Operating Condition of EUT

- 7.5.1. Setup the EUT as shown in Section 7.1.
- 7.5.2. Turn on the power of all equipments.
- 7.5.3.Let the EUT work in test mode (On) and measure it.

7.6.Test Procedure

- 7.6.1.Set up the EUT system as shown on Section 7.1.
- 7.6.2. The Induction coil is set up in horizontal or vertical.
- 7.6.3.Let the EUT work in test mode and measure it.

7.7.Test Results

PASS.

Please refer to the following page.

Magnetic Field Immunity Test Result					
Standard	☐ IEC 61000-4-8				
Applicant	JFIA Machinery (ShangHai) Co.,Ltd.				
EUT	Edge bander Temperature 26°C				
M/N	M3121	Humidity	51%		
Test Mode	Normal Criterion A				
Test Engineer	Liang Test Date July 8, 2025				

Test Level (A/M)	Testing Duration	Coil Orientation	Criterion	Result
3	5 mins	X	A	PASS
3	5 mins	Y	A	PASS
3	5 mins	Z	A	PASS

Note:

8. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

Fig.2

Fig.3

-----THE END OF REPORT-----