RADIO TEST REPORT

For

TREVIDEA S.r.I.

AM/FM/SW radio with Bluetooth speaker

Test Model: RA7F20BT

Prepared for : TREVIDEA S.r.l.

Address : Strada consolare Rimini San Marino, 62, 47924 Rimini (RN)

Italy

Prepared by : Shenzhen AOCE Electronic Technology Service Co., Ltd

Address : Room 202, 2nd Floor, No.12th Building of Xinhe Tongfuyu

Industrial Park, Fuhai Street, Baoan District, Shenzhen,

Guangdong, China

Tel : (86)755-85277785 Fax : (86)755-23705230

Web : Http://www.aoc-cert.com
Mail : postmaster@aoc-cert.com

Date of receipt of test sample : November 01, 2025

Number of tested samples : 1

Serial number : Prototype

Date of Test : November 01, 2025~November 18, 2025

Date of Report : November 18, 2025

]	RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)
Wideband transmission system	ns; Data transmission equipment operating in the 2,4 GHz band;
Harmon	ised Standard for access to radio spectrum
Report Reference No	: AOC251103101E
Date of Issue	: November 18, 2025
Testing Laboratory Name	: Shenzhen AOCE Electronic Technology Service Co., Ltd
Address	: Room 202, 2nd Floor, No.12th Building of Xinhe Tongfuyu Industrial Park, Fuhai Street, Baoan District, Shenzhen, Guangdong, China
Testing Location/ Procedure	 : Full application of Harmonised standards Partial application of Harmonised standards □ Other standard testing method
Applicant's Name	: TREVIDEA S.r.l.
Address	: Strada consolare Rimini San Marino, 62, 47924 Rimini (RN) Italy
Test Specification	
Standard	: ETSI EN 300 328 V2.2.2 (2019-07)
Test Report Form No	: AOCEEMC-1.0
TRF Originator	: Shenzhen AOCE Electronic Technology Service Co., Ltd
Master TRF	: Dated 2017-06
This publication may be reproduced Shenzhen AOCE Electronic Technologource of the material. Shenzhen A	nology Service Co., Ltd All rights reserved. I in whole or in part for non-commercial purposes as long as the clogy Service Co., Ltd is acknowledged as copyright owner and OCE Electronic Technology Service Co., Ltd takes no responsibility damages resulting from the reader's interpretation of the reproduced context.
Test Item Description	: AM/FM/SW radio with Bluetooth speaker
Trade Mark	: Trevi
Test Model	: RA7F20BT
Ratings	: DC 3.7V by Li-ion Battery Recharged by DC 5V
Result	: Positive

Compiled by:	Supervised by:	Approved by:
David Liu	Joey Un	juny yu
David Liu/ Administrators	Joey Liu/ Technique principal	Murry Yu/ Manager

November 18, 2025

Date of issue

Test Report No.: AOC251103101E

RADIO -- TEST REPORT

Test Model.....: RA7F20BT EUT.....:: AM/FM/SW radio with Bluetooth speaker Applicant.....:: TREVIDEA S.r.l. Address.....: Strada consolare Rimini San Marino, 62, 47924 Rimini (RN) Italy Telephone....:: / Fax.....:: / Manufacturer....:: SHENZHEN HEART STONE TECH CO., LTD Address.....: Room610, Building1, Lihu Community, Jihua Street, Longgang District, Shenzhen, China Telephone....: : / Fax.....:: : / Factory.....: : / Address.....: : / Telephone.....: : / Fax.....:: /

Test Result	Positive
l l	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS

Test Report Description	Page
1. GENERAL INFORMATION	6
1.1. Product Description for Equipment Under Test (EUT)	
1.2. OBJECTIVE	
1.3. RELATED SUBMITTAL(S)/GRANT(S)	6
1.4. Test Methodology	
1.5. SUPPORT EQUIPMENT LIST	
1.6. EXTERNAL I/O	
1.7. LIST OF MEASURING EQUIPMENT	
1.8. TEST ENVIRONMENT	
2. SYSTEM TEST CONFIGURATION	
2.1. JUSTIFICATION	
2.1. JUSTIFICATION	
2.3. SPECIAL ACCESSORIES	
2.4. BLOCK DIAGRAM/SCHEMATICS	
2.5. EQUIPMENT MODIFICATIONS	
2.6. CONFIGURATION OF TEST SETUP	
3. RF OUTPUT POWER	12
3.1. Limit	
3.2. Test Setup	
3.3. TEST PROCEDURE	
3.4. Test Result	
3.5. RECEIVER CATEGORY	
4. DUTY CYCLE, TX-SEQUENCE, TX-GAP	
5.1. LIMIT	
5.2. TEST SETUP	
4.3. TEST PROCEDURE	
5. DWELL TIME, MINIMUM FREQUENCY OCCUPATION AND HOPPING SEQUENCE 5.1. LIMIT	
5.2. Test Setup	
5.3. TEST PROCEDURE	
5.4. Test Result	
6. HOPPING FREQUENCY SEPARATION	
6.1. LIMIT	
6.3. TEST PROCEDURE.	
6.4. Test Result	
7. MEDIUM UTILISATION (MU) FACTOR	
7.1. LIMIT	
7.2. Test Setup.	
7.3. TEST PROCEDURE	
7.4. Test Result	
8. ADAPTIVITY (ADAPTIVE FREQUENCY HOPPING)	24
8.1. LIMIT	
8.2. Test Setup	
8.3. Test Procedure	25
8.4. Test Result	25
9. OCCUPIED CHANNEL BANDWIDTH	26
9.1. Limit	
9.2. Test Setup	
9.3. Test Procedure	26

9.4. Test Result	27
10. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	28
10.1. Limit	28
10.2. Test Setup	28
10.3. TEST PROCEDURE	29
10.5. Test Result	31
11. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	33
11.1. Limit	33
11.2. Test Setup	
11.3. Test Procedure	
11.4. Test Result	35
12. RECEIVER SPURIOUS EMISSIONS	36
12.1. Limit	36
12.2. TEST SETUP	
12.3. TEST PROCEDURE	37
12.4. Test Result	38
13. RECEIVER BLOCKING	39
13.1. LIMIT	
13.2. Test Setup	
13.3. TEST PROCEDURE	
13.4. Test Result	
14. PHOTOGRAPHS OF TEST SETUP	43

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT : AM/FM/SW radio with Bluetooth speaker

Test Model : RA7F20BT

Hardware Version : V1.1 Software Version : V1.1

Bluetooth :

Frequency Range : 2.402-2.480GHz

Channel Number : 79 channels

Channel Spacing : 1MHz

Modulation Type : GFSK, π/4-DQPSK, 8-DPSK

Bluetooth Version : V5.0

Antenna Description : PCB Antenna, 1.2dBi(Max.)

FM:

Frequency Range : 88-108MHz

Modulation Type : FM

Antenna Description : External Antenna

AM :

Frequency Range : 53-171KHz

Modulation Type : AM

Antenna Description : External Antenna

SW:

Frequency Range : 5.9MHz-18MHz

Modulation Type : SW

Antenna Description : External Antenna

1.2. Objective

This Type approval report is prepared on behalf of **TREVIDEA S.r.l.** in accordance with ETSI EN 300 328 V2.2.2 (2019-07), Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonised Standard for access to radio spectrum.

The objective is to determine compliance with ETSI EN 300 328 V2.2.2 (2019-07).

1.3. Related Submittal(s)/Grant(s)

No Related Submittals.

1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 300 328 V2.2.2 (2019-07).

1.5. Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate	

1.6. External I/O

I/O Port Description	Quantity	Cable
USB Port	1	N/A
AUX In Port	1	N/A

1.7. List Of Measuring Equipment

Instrument	Manufacture	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Jun 18, 2025	Jun 17, 2026
Signal analyzer	Agilent	E4448A(Externa I mixers to 40GHz)	US443004 69	9kHz~40GHz	Jun 18, 2025	Jun 17, 2026
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	Jun 18, 2025	Jun 17, 2026
LISN	EMCO	3819/2NM	9703-1839	9KHz-30MHz	Jun 18, 2025	Jun 17, 2026
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	Jun 18, 2025	Jun 17, 2026
ISN	SCHAFFNE	ISN ST08	21653	9KHz-30MHz	Jun 18, 2025	Jun 17, 2026
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-H Y	30M-18GHz	Jun 18, 2025	Jun 17, 2026
Amplifier	SCHAFFNE	COA9231A	18667	9kHz-2GHzz	Jun 18, 2025	Jun 17, 2026
Amplifier	Agilent	8449B	3008A021	1GHz-26.5GHz	Jun 18, 2025	Jun 17, 2026
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	Jun 18, 2025	Jun 17, 2026
Loop Antenna	R&S	HFH2-Z2	860004/00	9k-30MHz	Jun 18, 2025	Jun 17, 2026
By-log Antenna	SCHWARZB	VULB9163	9163-470	30MHz-1GHz	Jun 18, 2025	Jun 17, 2026
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	Jun 18, 2025	Jun 17, 2026
Horn Antenna	SCHWARZB	BBHA9170	BBHA9170	15GHz-40GHz	Jun 18, 2025	Jun 17, 2026
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	Jun 18, 2025	Jun 17, 2026
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-H	1GHz-40GHz	Jun 18, 2025	Jun 17, 2026
Power Meter	R&S	NRVS	100444	DC-40GHz	Jun 18, 2025	Jun 17, 2026
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	Jun 18, 2025	Jun 17, 2026
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	Jun 18, 2025	Jun 17, 2026
AC Power Source	HPC	HPA-500E	HPA-9100	AC 0~300V	Jun 18, 2025	Jun 17, 2026
DC power Soure	GW	GPC-6030D	C671845	DC 1V-60V	Jun 18, 2025	Jun 17, 2026
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103- 00	N/A	Jun 18, 2025	Jun 17, 2026
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	Jun 18, 2025	Jun 17, 2026
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	Jun 18, 2025	Jun 17, 2026
Signal Generator	R&S	SMR40	10016	10MHz~40GHz	Jun 18, 2025	Jun 17, 2026
Universal Radio Communication Tester	R&S	CMU200	112012	N/A	Jun 18, 2025	Jun 17, 2026
Wideband Radio Communication Tester	R&S	CMW500	1201.0002 K50	N/A	Jun 18, 2025	Jun 17, 2026
MXG Vector Signal Generator	Agilent	N5182A	MY470711 51	250KHz~6GHz	Jun 18, 2025	Jun 17, 2026
MXG Vector Signal Generator	Agilent	E4438C	MY420813 96	250KHz~6GHz	Jun 18, 2025	Jun 17, 2026
PSG Analog Signal Generator	Agilent	N8257D	MY465205 21	250KHz~20GHz	Jun 18, 2025	Jun 17, 2026
MXA Signal Analyzer	Agilent	N9020A	MY505101 40	10Hz~26.5GHz	Jun 18, 2025	Jun 17, 2026
DC Power Supply	Agilent	E3642A	/	0-8V,5A/0-20V,2 .5A	Jun 18, 2025	Jun 17, 2026
RF Control Unit	Tonscend	JS0806-1	1	1	Jun 18, 2025	Jun 17, 2026
LTE Test Software	Tonscend	JS1120-1	/	Version: 2.5.7.0	Jun 18, 2025	Jun 17, 2026

X-series USB Peak an d Average Power Sens or Agilent	Agilent	U2021XA	MY540800 22	/	Jun 18, 2025	Jun 17, 2026
4 Ch.Simultaneous Sa mpling 14 Bits 2 MS/s	Agilent	U2531A	MY540800 16	/	Jun 18, 2025	Jun 17, 2026
Test Software	Ascentest	AT890-SW	20141230	Version:	Jun 18, 2025	Jun 17, 2026
Splitter/Combiner(Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400 424	1	Jun 18, 2025	Jun 17, 2026
Splitter/Combine(Qty: 2)	MCLI	PS3-7	4463/4464	/	Jun 18, 2025	Jun 17, 2026
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	/	Jun 18, 2025	Jun 17, 2026

1.8. Test Environment

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	21
Humidity (%RH)	25-75	50
Barometric pressure (mbar)	860-1060	950-1000

1.9. Description Of Test Modes

AOC has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode
Mode 1: Transmit by DH1
Mode 2: Transmit by 2DH1
Mode 3: Transmit by 3DH1
Mode 4: Receive by DH1
Mode 5: Receive by 2DH1
Mode 6: Receive by 3DH1

Note:

- (1) For portable device, radiated spurious emission was verified over X, Y, Z Axis, and shown the worst case on this report.
- (2) Regards to the frequency band operation for systems using FHSS modulation: normal operation (hopping) was selected to test for conducted, and the lowest, highest frequency channel for radiation spurious test.
- (3) The extreme test condition for voltage and temperature were declared by the manufacturer.

2. SYSTEM TEST CONFIGURATION

2.1. Justification

The system was configured for testing in engineering mode.

2.2. EUT Exercise Software

N/A.

2.3. Special Accessories

N/A.

2.4. Block Diagram/Schematics

Please refer to the related document.

2.5. Equipment Modifications

Shenzhen AOCE Electronic Technology Service Co., Ltd has not done any modification on the EUT.

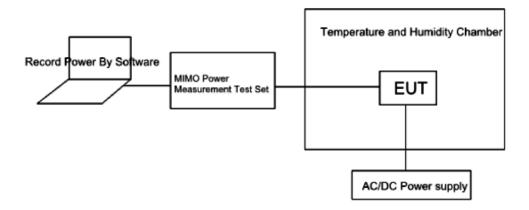
2.6. Configuration of Test Setup

Please refer to the test setup photo.

3. RF OUTPUT POWER

3.1. Limit

For non-adaptive frequency hopping systems


The maximum RF output power for non-adaptive Frequency Hopping equipment, shall be declared by the supplier. The maximum RF output power for this equipment shall be equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20dBm.

For adaptive frequency hopping systems

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20dBm.

3.2. Test Setup

For Conducted Measurement

3.3. Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.2

Step 1:

• The fast power sensor use the following setting: Sample speed 1 MS/s.

Step 2:

• Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.

Step 3:

• Find the start and stop times of each burst in the stored measurement samples.

Step 4:

• Between the start and stop times of each individual burst calculate the RMS power over the burst. Save these Pburst values, as well as the start and stop times for each burst.

Step 5:

• The highest of all Pburst values (value "A" in dBm) will be used for maximum e.i.r.p. calculations.

Step 6:

- Add the (stated) antenna assembly gain "G" in dBi of the individual antenna.
- If applicable, add the additional beamforming gain "Y" in dB.

The RF Output Power (P) shall be calculated using the formula below: P = A + G + Y

3.4. Test Result

Pass

***Note: 20 bursts had been captured for power measurement.

Product	:	AM/FM/SW radio with Bluetooth speaker	
Test Item	:	RF Output Power	
Test Mode	:	Mode 1: Transmit by DH1	

Test Co	nditions	Frequency (MHz) RF Output Power EIRP (dBm)		Limit (dBm)
	***	2402	0.84	
Tnom (25°C)	Vnom (DC 3.7V)	2441	1.24	20
		2480	1.76	
	Vnom (DC 3.7V)	2402	0.86	
Tmax (45°C)		2441	1.33	20
	(DC 3.7V)	2480	1.50	
		2402	0.91	
Tmin (-20°C)	Vnom (DC 3.7V)	2441	1.27	20
		2480	1.33	

Product	••	AM/FM/SW radio with Bluetooth speaker
Test Item	• •	RF Output Power
Test Mode	:	Mode 2: Transmit by 2DH1

Test Co	nditions	Frequency (MHz)	RF Output Power EIRP (dBm)	Limit (dBm)
	***	2402	0.39	
Tnom (25°C)	Vnom (DC 3.7V)	2441	0.54	20
	(DC 3.7V)	2480	1.10	
	Vnom (DC 3.7V)	2402	0.20	20
Tmax (45°C)		2441	0.80	
	(DC 3.7 V)	2480	0.99	
	**	2402	0.34	
Tmin (-20°C)	Vnom (DC 3.7V)	2441	0.70	20
	(DC 3.7 V)	2480	0.88	

Product	••	AM/FM/SW radio with Bluetooth speaker
Test Item	:	RF Output Power
Test Mode	:	Mode 3: Transmit by 3DH1

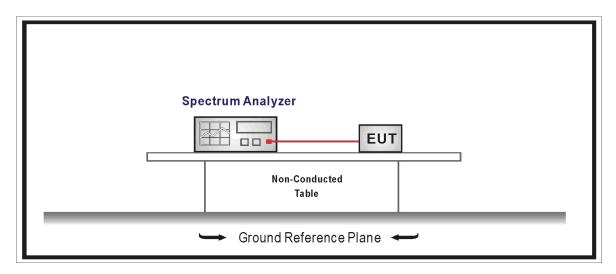
Test Co.	nditions	Frequency (MHz)	RF Output Power EIRP (dBm)	Limit (dBm)
	**	2402	0.22	
Tnom (25℃)	Vnom (DC 3.7V)	2441	0.57	20
	(DC 3.7V)	2480	1.07	
	**	2402	0.28	20
Tmax (45°C)	Vnom (DC 3.7V)	2441	0.66	
	(DC 3.7V)	2480	0.86	
	Vnom (DC 3.7V)	2402	0.43	
Tmin (-20°C)		2441	0.64	20
	(DC 3.7V)	2480	0.68	

3.5. Receiver Category

Receiver Category 1: Adaptive equipment with a maximum RF output power greater than 10 dBm e.i.r.p. shall be considered as receiver category 1 equipment.

Receiver Category 2:Non-adaptive equipment with a Medium Utilization (MU) factor greater than 1 % and less than or equal to 10 % or adaptive equipment with a maximum RF output power of 10 dBm e.i.r.p. shall be considered as receiver category 2 equipment.

Receiver Category 3: Non-adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p. shall be considered as receiver category 3 equipment.


As this is an adaptivity device with a maximum power of 1.76dBm, it belongs to recevier category 2.

4. DUTY CYCLE, TX-SEQUENCE, TX-GAP

5.1. Limit

For non-adaptive FHSS equipment, the Duty Cycle shall be equal to or less than the maximum value declared by the supplier. In addition, the maximum Tx-sequence time shall be 5 ms while the minimum Tx-gap time shall be 5 ms.

5.2. Test Setup

4.3. Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.2

4.4. Test Result

These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode.

These requirements do not apply for equipment with a maximum declared RF Output power of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P.

No applicable.

5. DWELL TIME, MINIMUM FREQUENCY OCCUPATION AND HOPPING SEQUENCE

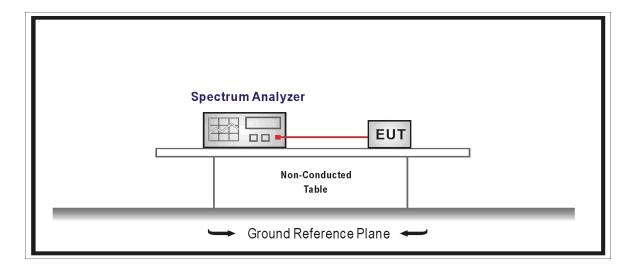
5.1. Limit

For non-adaptive frequency hopping systems

The accumulated Dwell Time on any hopping frequency shall not be greater than 15 ms within any period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used. The hopping sequence(s) shall contain at least N hopping frequencies where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

The Minimum Frequency Occupation Time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and the number of hopping frequencies in use.

For adaptive frequency hopping systems


Adaptive Frequency Hopping systems shall be capable of operating over a minimum of 70 % of the band specified in clause 1.

The maximum accumulated dwell time on any hopping frequency shall be 400 ms within any period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

The Minimum Frequency Occupation Time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and the number of hopping frequencies in use.

5.2. Test Setup

5.3. Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.4

Step 1:

- The output of the transmitter shall be connected to a spectrum analyzer or equivalent.
- The analyzer shall be set as follows:
- Centre Frequency: Equal to the hopping frequency being investigated
- Frequency Span: 0 Hz
- RBW: ~ 50 % of the Occupied Channel Bandwidth(we set RBW=510KHz)
- VBW: \geq RBW(we set RBW=1500KHz)
- Detector Mode: RMS
- Sweep time: Equal to the Dwell Time \times Minimum number of hopping frequencies (N) (see clause 4.3.1.3.2)
- Number of sweep points: 30 000
- Trace mode: Clear / Write
- Trigger: Free Run

Step 2:

• Save the trace data to a file for further analysis by a computing device using an appropriate software application or program.

Step 3:

- Indentify the data points related to the frequency being investigated by applying a threshold. The data points resulting from transmissions on the hopping frequency being investigated are assumed to have much higher levels compared to data points resulting from transmissions on adjacent hopping frequencies. If a clear determination between these transmissions is not possible, the RBW in step 1 shall be further reduced. In addition, a channel filter may be used.
- Count the number of data points identified as resulting from transmissions on the frequency being investigated and multiply this number by the time difference between two consecutive data points.

Step 4:

• The result in step 3 is the accumulated Dwell Time which shall comply with the limit provided in clauses 4.3.1.3.2.1 or 4.3.1.3.2.2 and which shall be recorded in the test report.

Step 5:

- Make the following changes on the analyzer and repeat steps 2 and 3. Sweep time: $4 \times Dwell Time \times Actual number of hopping frequencies in use The hopping frequencies occupied by the system without having transmissions during the dwell time (blacklisted frequencies) should be taken into account in the actual number of hopping frequencies in use. If this number can not be determined (number of blacklisted frequencies unknown) it shall be assumed that the equipment uses the minimum number of hopping frequencies as defined in clauses 4.3.1.4.2.1 or 4.3.1.4.2.2.$
- The result shall be compared to the limit for the Minimum Frequency Occupation Time defined in clauses 4.3.1.3.2.1 or 4.3.1.3.2.2. This value shall be recorded in the test report.

Step 6:

• Make the following changes on the analyzer:

Start Frequency: 2 400 MHzStop Frequency: 2 483,5 MHz

- RBW: ~ 50 % of the Occupied Channel Bandwidth (single hop) (we set RBW=510KHz)

- VBW: \geq RBW (we set RBW=1500KHz)

Detector Mode: RMSSweep time: AutoTrace Mode: Max Hold

- Trigger: Free Run

• When the trace has completed, indentify the number of hopping frequencies used by the hopping sequence.

• The result shall be compared to the limit (value N) defined in clauses 4.3.1.3.2.1 or 4.3.1.3.2.2. This value shall be recorded in the test report. For equipment with blacklisted frequencies, it might not be possible to verify the number of hopping frequencies in use. However they shall comply with the requirement for accumulated Dwell time and Minimum Frequency Occupation Time assuming the minimum number of hopping frequencies defined in clauses 4.3.1.3.2.1 or 4.3.1.3.2.2 are in use.

Step 7:

• For adaptive systems, using the lowest and highest -20 dB points from the total spectrum envelope obtained in step 6, it shall be verified whether the system uses 70 % of the band specified in clause 1. The result shall be recorded in the test report.

5.4. Test Result

Product	:	AM/FM/SW radio with Bluetooth speaker
Test Result	:	Pass

Dwell time

Doolset	One Pulse time	Accumulated	Measure Time	T innit	Conclusion
Packet	(ms)	Dwell Time (ms) (ms)		Limit	Conclusion
DH1	0.43	137.60			
DH3	1.59	246.45	31600	<400ms	PASS
DH5	2.93	342.81			
Remark: Only record the worst data.					

Mini Frequency Occupation Time

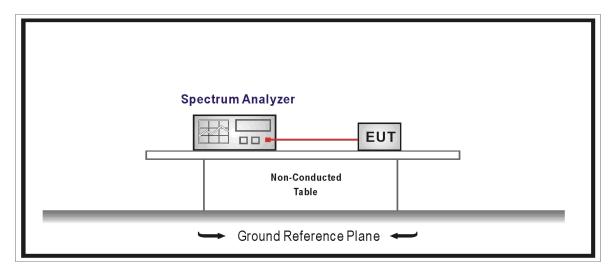
Mode	Mini frequency occupation Time(ms)	Measure Time (ms)	Conclusion
DH1	0.86	135.88	PASS
DH3	3.18	502.44	PASS
DH5	8.79	925.88	PASS
Remark: Only record the worst data.			

Hopping channel & Hopping sequence

Mode	Number of hopping channel	Limit	Conclusion
GFSK	79	>15	PASS
Mode	Hopping Sequence(%)	Limit	Conclusion
GFSK	94.83%	>70%	PASS

6. HOPPING FREQUENCY SEPARATION

6.1. Limit


For non-adaptive equipment

The minimum Hopping Frequency Separation shall be equal to Occupied Channel Bandwidth of a single hop, with a minimum separation of 100 kHz.

For adaptive equipment

The minimum Hopping Frequency Separation shall be 100 kHz.

6.2. Test Setup

6.3. Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.5

The analyzer was setting as follow:

- Centre Frequency: Centre of the two adjacent hopping frequencies

- Frequency Span: Sufficient to see the complete power envelope of both hopping frequencies

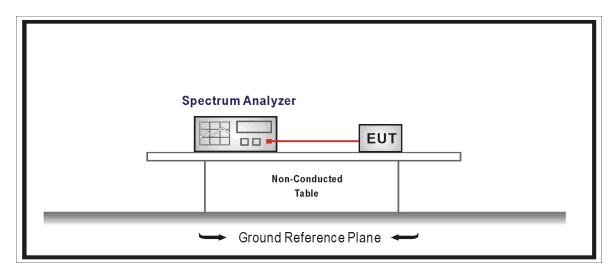
- RBW: 30KHz - VBW: 91KHz

Detector Mode: RMSTrace Mode: Max HoldSweep time: Auto

6.4. Test Result

Product	•	AM/FM/SW radio with Bluetooth speaker
Test Item	:	Hopping Frequency Separation
Test Result	:	Pass

Mode	Result (MHz)	Limit (MHz)	Conclusion
DH1	0.97	>=0.1	
2DH1	1.01	>=0.1	PASS
3DH1	1.02	>=0.1	


7. MEDIUM UTILISATION (MU) FACTOR

7.1. Limit

For non-adaptive equipment

The maximum Medium Utilisation factor for non-adaptive Frequency Hopping equipment shall be 10 %.

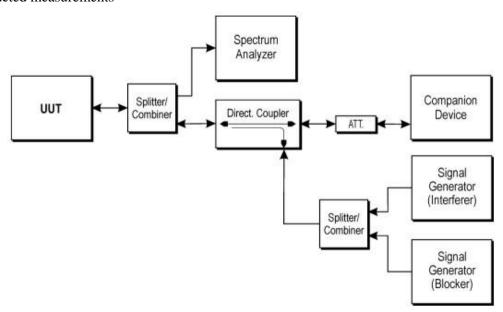
7.2. Test Setup

7.3. Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.2

7.4. Test Result

This requirement does not apply to adaptive equipment unless operating in a non-adaptive mode. In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P. No applicable.


8. ADAPTIVITY (ADAPTIVE FREQUENCY HOPPING)

8.1. Limit

Adaptivity Limit LBT based Detect and Avoid --- Minimum Clear Channel Assessment (CCA) time = 20 us; --- CCA observation time declared by the supplier; --- COT \leq 60 ms; --- Idle Period = 5% of COT; --- Detection threshold level = -70dBm/MHz + 20 – Pout E.I.R.P (Pout in dBm); Non-LBT based Detect and Avoid --- The frequency shall remain unavailable for a minimum time equal to 1 second or 5 times the actual number of hopping frequencies multiplied with the Channel Occupancy Time whichever is the longest; --- COT \leq 40 ms; --- Idle Period = 5% of COT; --- Detection threshold level = -70dBm/MHz + 20 – Pout E.I.R.P (Pout in dBm); **Short Control Signalling Transmissions:** --- Short Control Signalling Transmissions shall have a maximum duty cycle of 10% within an observation period of 50ms.

8.2. Test Setup

Conducted measurements

8.3. Test Procedure

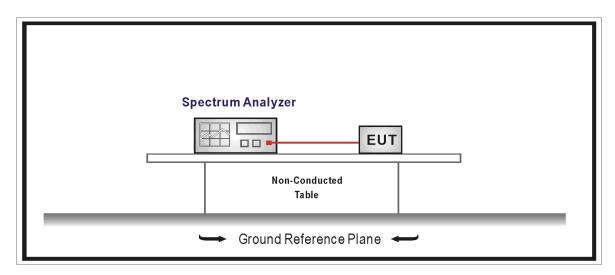
Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.7

8.4. Test Result

This requirement does not apply to non-adaptive equipment or adaptive equipment operating in a non-adaptive mode providing the equipment complies with the requirements and/or restrictions applicable to non-adaptive equipment.

In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P.

No applicable.


9. OCCUPIED CHANNEL BANDWIDTH

9.1. Limit

The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band given in 2.4GHz to 2.4835GHz.

For non-adaptive Frequency Hopping equipment with E.I.R.P greater than 10dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than the value declared by the supplier. This declared value shall not be greater than 5 MHz.

9.2. Test Setup

9.3. Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.8

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: The centre frequency of the channel under test
- Resolution BW: ~ 1 % of the span without going below 1 % (We set RBW=20KHz)
- Video BW: $3 \times RBW$ (We set VBW=62KHz)
- Frequency Span: 2 × Occupied Channel Bandwidth (We set Span=2MHz)
- Detector Mode: RMS
- Trace Mode: Max Hold

Step 2:

Wait until the trace is completed. Find the peak value of the trace and place the analyser marker on this peak.

Step 3:

Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

9.4. Test Result

Product	:	AM/FM/SW radio with Bluetooth speaker
Test Item	:	Occupied Channel Bandwidth
Test Mode	:	Mode 1: Transmit by DH1

Channel No.	Frequency (MHz)	99% Bandwidth (MHz)	Limit
00	2402	0.87	Within the band
79	2480	0.94	2400.0MHz~2483.5MHz

Product	:	AM/FM/SW radio with Bluetooth speaker
Test Item	:	Occupied Channel Bandwidth
Test Mode	:	Mode 2: Transmit by 2DH1

Channel No.	Frequency (MHz)	99% Bandwidth (MHz)	Limit
00	2402	1.03	Within the band
79	2480	1.05	2400.0MHz~2483.5MHz

Product	:	AM/FM/SW radio with Bluetooth speaker	
Test Item	:	occupied Channel Bandwidth	
Test Mode	:	Mode 3: Transmit by 3DH1	

Channel No.	Frequency (MHz)	99% Bandwidth (MHz)	Limit
00	2402	1.07	Within the band
79	2480	1.10	2400.0MHz~2483.5MHz

T . D 1		D.
Test Result	:	Pass

10. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND

DOMAIN

10.1. Limit

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 3.

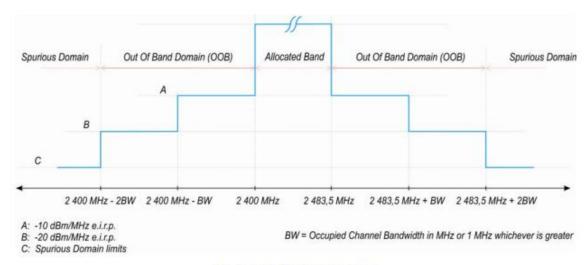
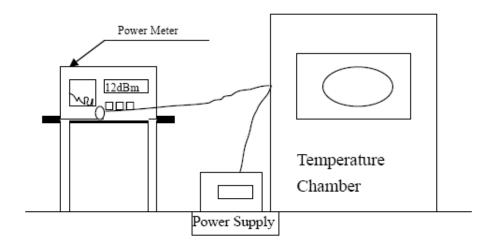



Figure 3: Transmit mask

10.2. Test Setup

For Conducted Measurement

10.3. Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.9

Step 1:

• Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: 2 484 MHz

- Span: 0 Hz

Resolution BW: 1 MHzFilter mode: Channel filter

- Video BW: 3 MHz- Detector Mode: RMS- Trace Mode: Clear / Write

- Sweep Points: 5 000

- Trigger Mode: Video trigger

- Sweep Mode: Continuous

NOTE 1: In case video triggering is not possible, an external trigger source may be used.

- Sweep Time: Suitable to capture one transmission burst

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

- Adjust the trigger level to select the transmissions with the highest power level.
- For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.
- Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.
- Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.
- Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

• Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz.

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

• Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

• Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

Step 6:

- In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
- In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figures 1 or 3.
- Option 2: the limits provided by the mask given in figures 1 or 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE 2: Ach refers to the number of active transmit chains.

It shall be recorded whether the equipment complies with the mask provided in figures 1 or 3.

10.5. Test Result

Product	:	AM/FM/SW radio with Bluetooth speaker	
Test Item	:	Transmitter unwanted emissions in the out-of-band domain	
Test Mode	:	Mode 1: Transmit by DH1	

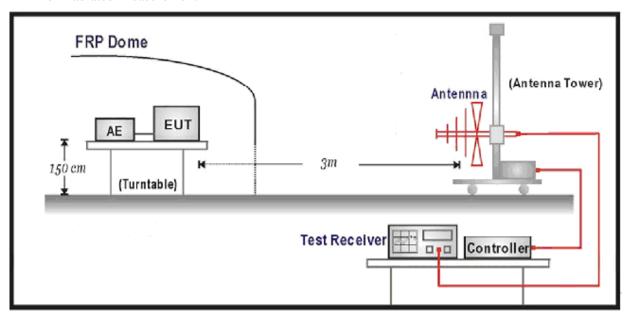
Frequency (MHz)	Test Conditions $(^{\circ}\mathbb{C})$	Max measured Values (dBm/MHz)	Limit (dBm/MHz)
2400–2BW~ 2400-BW	25	-67.79	-20
2400-BW~2400	25	-65.91	-10
2483.5~ 2483.5+BW	25	-68.23	-10
2483.5+BW~ 2483.5+2BW	25	-68.74	-20

Product	:	AM/FM/SW radio with Bluetooth speaker	
Test Item	:	Transmitter unwanted emissions in the out-of-band domain	
Test Mode	:	Mode 2: Transmit by 2DH1	

Frequency (MHz)	Test Conditions (℃)	Max measured Values (dBm/MHz)	Limit (dBm/MHz)
2400–2BW~ 2400-BW	25	-65.53	-20
2400-BW~2400	25	-62.83	-10
2483.5~ 2483.5+BW	25	-62.93	-10
2483.5+BW~ 2483.5+2BW	25	-62.75	-20

Product	:	AM/FM/SW radio with Bluetooth speaker	
Test Item	:	Transmitter unwanted emissions in the out-of-band domain	
Test Mode	:	Mode 3: Transmit by 3DH1	

Frequency (MHz)	Test Conditions (°C)	Max measured Values (dBm/MHz)	Limit (dBm/MHz)
2400–2BW~ 2400-BW	25	-65.58	-20
2400-BW~2400	25	-66.67	-10
2483.5~ 2483.5+BW	25	-62.83	-10
2483.5+BW~ 2483.5+2BW	25	-63.80	-20


11. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

11.1. Limit

Transmitter Limits for Spurious Emissions						
	Maximum power					
Frequency Range	E.R.P. $(\leq 1 \text{GHz})$	Bandwidth				
	E.I.R.P. (> 1GHz)					
30 MHz to 47 MHz	-36 dBm	100 kHz				
47 MHz to 74 MHz	-54 dBm	100 kHz				
74 MHz to 87,5 MHz	-36 dBm	100 kHz				
87,5 MHz to 118 MHz	-54 dBm	100 kHz				
118 MHz to 174 MHz	-36 dBm	100 kHz				
174 MHz to 230 MHz	-54 dBm	100 kHz				
230 MHz to 470 MHz	-36 dBm	100 kHz				
470 MHz to 862 MHz	-54 dBm	100 kHz				
862 MHz to 1 GHz	-36 dBm	100 kHz				
1 GHz to 12,75 GHz	-30 dBm	1 MHz				

11.2. Test Setup

For Radiated Measurement

11.3. Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.10

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 1 or 4.

Step 2:

The emissions over the range 30 MHz to 1 000 MHz shall be identified.

Spectrum analyser settings:

Resolution bandwidth: 100 kHz
Video bandwidth: 300 kHz
Detector mode: Peak

Trace Mode: Max Hold
Sweep Points: ≥ 9 970

NOTE 1: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

• Sweep time: For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT. For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on the same hopping frequency in different hopping sequences. Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.10.2.1.2 and compared to the limits given in tables 1 or 4.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified.

Spectrum analyser settings:

Resolution bandwidth: 1 MHzVideo bandwidth: 3 MHz

Detector mode: Peak
Trace Mode: Max Hold
Sweep Points: ≥ 11 750

NOTE 2: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

• Sweep time: For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement time is greater than two transmissions of the UUT.

11.4. Test Result

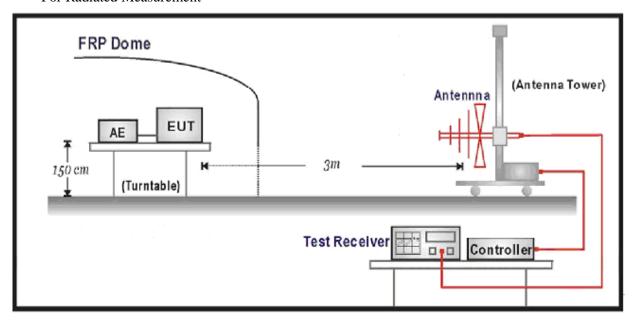
Product	:	AM/FM/SW radio with Bluetooth speaker	
Test Item	:	Transmitter spurious emissions	
Test Mode	:	Mode 1: Transmit by DH1(radiated method)	

Frequency (MHz)	Polarization (H/V)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector			
	Channel 0 (2402MHz)							
116.80	Н	-67.92	-54.00	-13.92	PK			
204.68	V	-66.84	-54.00	-12.84	PK			
903.32	Н	-50.68	-36.00	-14.68	PK			
924.93	V	-48.95	-36.00	-12.95	PK			
4809.55	Н	-42.35	-30.00	-12.35	PK			
4809.63	V	-40.45	-30.00	-10.45	PK			
7214.55	Н	-44.88	-30.00	-14.88	PK			
7214.55	V	-40.96	-30.00	-10.96	PK			
		Channel 78 (24	180MHz)					
267.57	Н	-49.87	-36.00	-13.87	PK			
227.17	V	-64.60	-54.00	-10.60	PK			
847.32	Н	-65.09	-54.00	-11.09	PK			
814.21	V	-64.72	-54.OO	-10.72	PK			
4947.60	Н	-40.86	-30.00	-10.86	PK			
4947.62	V	-44.84	-30.00	-14.84	PK			
7421.63	Н	-44.36	-30.00	-14.36	PK			
7421.60	V	-43.80	-30.00	-13.80	PK			

Product	:	AM/FM/SW radio with Bluetooth speaker	
Test Item	:	Transmitter spurious emissions	
Test Mode	:	Mode 1: Transmit by DH1(conducted method)	

Frequency(MHz)	Measure Level(dBm)	Limit(dBm)	Margin(dB)	Detector				
	Channel 0 (2402MHz)							
164.37	-47.10	-36.00	-11.10	PK				
936.92	-46.63	-36.00	-10.63	PK				
4803.60	-38.96	-30.00	-8.96	PK				
7205.57	-43.43	-30.00	-13.43	PK				
	Channel 78 (2480MHz)							
225.83	-65.19	-54.00	-11.19	PK				
884.41	-50.45	-36.00	-14.45	PK				
4959.63	-42.54	-30.00	-12.54	PK				
7439.61	-40.66	-30.00	-10.66	PK				

Note: only record the worst case data in the test report.


12. RECEIVER SPURIOUS EMISSIONS

12.1. Limit

Spurious emissions limits for receivers						
	Maximum power					
Frequency Range	E.R.P. (≤ 1GHz)	Measurement bandwidth				
	E.I.R.P. (> 1GHz)					
30 MHz to 1 GHz	-57 dBm	100 kHz				
1 GHz to 12.75 GHz	-47 dBm	1 MHz				

12.2. Test Setup

For Radiated Measurement

12.3. Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.11

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 2 or 5.

Step 2:

The emissions over the range 30 MHz to 1 000 MHz shall be identified.

Spectrum analyser settings:

Resolution bandwidth: 100 kHz
Video bandwidth: 300 kHz

Detector mode: Peak
Trace Mode: Max Hold
Sweep Points: ≥ 9 970
Sweep time: Auto

Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.11.2.1.2 and compared to the limits given in tables 2 or 5.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified.

Spectrum analyser settings:

Resolution bandwidth: 1 MHzVideo bandwidth: 3 MHz

Detector mode: Peak
Trace Mode: Max Hold
Sweep Points: ≥ 11 750

• Sweep time: Auto

Allow the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.11.2.1.2 and compared to the limits given in tables 2 or 5. Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.3.11.2.1.2.

Step 4:

• In case of conducted measurements on smart antenna systems (equipment with multiple receive chains), the steps 2 and 3 need to be repeated for each of the active receive chains (Ach). The limits used to identify emissions during this pre-scan need to be reduced with $10 \times \log 10$ (Ach) (number of active receive chains).

12.4. Test Result

Product	:	AM/FM/SW radio with Bluetooth speaker	
Test Item	••	Receiver spurious emissions	
Test Mode	:	Mode 4: Receive by DH1(radiated method)	

Frequency (MHz)	Polarization (H/V)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector			
	Channel 0 (2402MHz)							
219.78	Н	-68.23	-57.00	-11.23	PK			
222.76	V	-70.88	-57.00	-13.88	PK			
886.46	Н	-67.98	-57.00	-10.98	PK			
979.27	V	-68.63	-57.00	-11.63	PK			
1725.71	Н	-58.06	-47.00	-11.06	PK			
1728.59	V	-60.35	-47.00	-13.35	PK			
2345.24	Н	-62.21	-47.00	-15.21	PK			
2485.08	V	-58.39	-47.00	-11.39	PK			
		Channel 78 (24	80MHz)					
195.85	Н	-69.34	-57.00	-12.34	PK			
250.55	V	-70.70	-57.00	-13.70	PK			
861.54	Н	-68.65	-57.00	-11.65	PK			
988.06	V	-68.42	-57.00	-11.42	PK			
1349.42	Н	-59.06	-47.00	-12.06	PK			
1811.66	V	-60.60	-47.00	-13.60	PK			
2854.27	Н	-59.71	-47.00	-12.71	PK			
2348.79	V	-61.29	-47.00	-14.29	PK			

Product	:	AM/FM/SW radio with Bluetooth speaker	
Test Item	:	Receiver spurious emissions	
Test Mode	:	Mode 4: Receive by DH1(conducted method)	

Frequency(MHz)	Measure Level(dBm)	Limit(dBm)	Margin(dB)	Detector				
	Channel 0 (2402MHz)							
287.87	-67.58	-57.00	-10.58	PK				
878.21	-67.70	-57.00	-10.70	PK				
1879.49	-58.25	-47.00	-11.25	PK				
2869.07	-62.26	-47.00	-15.26	PK				
	Channel 78 (2480MHz)							
136.02	-68.06	-57.00	-11.06	PK				
880.27	-68.06	-57.00	-11.06	PK				
1459.61	-59.68	-47.00	-12.68	PK				
2338.60	-60.41	-47.00	-13.41	PK				

Note: only record the worst case data in the test report.

13. RECEIVER BLOCKING

13.1. Limit

Adaptive Frequency Hopping equipment shall comply with the requirements defined in clause 4.3.1.12.4

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504		
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584 2 674	-34	cw

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 7: Receiver Blocking parameters receiver Category 2 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW

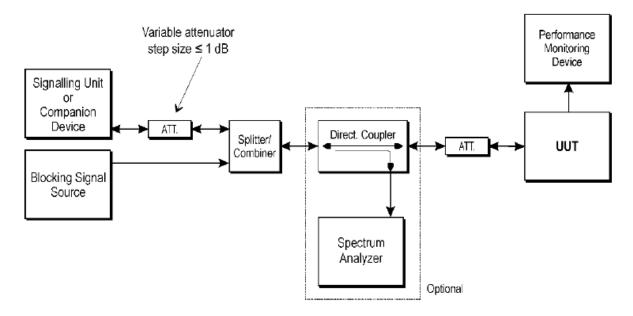
NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver Category 3 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal	
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380			
or (-74 dBm + 20 dB) whichever is less	2 504	-34	cw	
(see note 2)	2 300	-54		
(222 11000 2)	2 584			


NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to P_{min} + 30 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

13.2. Test Setup

Conducted measurements

13.3. Test Procedure

Step 1:

- For non-frequency hopping equipment, the UUT shall be set to the lowest operating channel. Step 2:
- The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

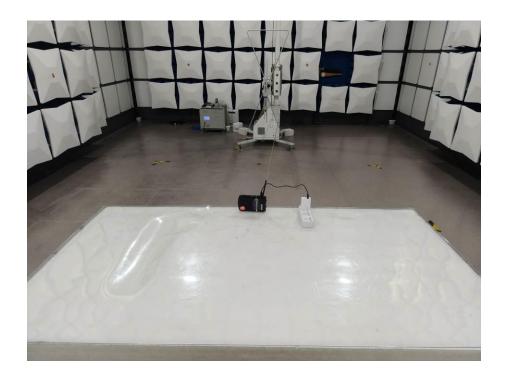
Step 3:

- With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6. The attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin.
- This signal level (Pmin) is increased by the value provided in the table corresponding to the receiver category and type of equipment.

Step 4:

• The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is met.

Step 5:


- Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment. Step 6:
- For non-frequency hopping equipment, repeat step 2 to step 5 with the UUT operating at the highest operating channel.

13.4. Test Result

Product	:	Tablet PC		
Test Item	:	Receiver spurious emissions(conducted)		
Test Mode	:	Receiving		
Test Environment	••	25℃ 43.5%RH		

Receiver Category	Test Channel	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	PER (%)	Limit (%)	Result
2 All channel Hopping	-69.5	2300	-34	4.93	10	Pass	
		2380		7.69	10	Pass	
		-09.3	2504	-34	5.38	10	Pass
			2584		4.89	10	Pass

14. PHOTOGRAPHS OF TEST SETUP

-----THE END OF REPORT-----