EMC TEST REPORT

For

Beijing Ping An Lihe Technology Development Co., Ltd.

43-Inch Queuing Machine

Model No.: P-GX1-B43ZXU-J1900+4+128G

Prepared for : Beijing Ping An Lihe Technology Development Co., Ltd. Address : Room 102, First Floor, No. 30, Hospital, 5 Jiantai Road,

Chaoyang District, Beijing

Prepared by : Shenzhen AOCE Testing Technology Service Co., Ltd

Address : Room 202, 2nd Floor, No.12th Building of Xinhe Tongfuyu

Industrial Park, Fuhai Street, Baoan District, Shenzhen,

Guangdong, China

Tel : (+86)755-85277785
Fax : (+86)755-23705230
Web : www.aoc-cert.com

Mail : postmaster@aoc-cert.com

Date of receipt of test sample : December 01, 2021

Number of tested samples : 1

Serial number : Prototype

Date of Test : December 01, 2021 - December 15, 2021

Date of Report : December 15, 2021

Jackson Fang/ Manager

David Liu/ File administrators

EMC TEST REPORT EN 55032:2015+A11:2020

Information technology equipment-Radio disturbance characteristics-Limits of measurement EN 55035:2017+A11:2020;

Information technology equipment-Immunity characteristics-Limits and methods of measurement

	J			
Report Reference No:	AOC201013103E-R1			
Date Of Issue:	December 15, 2021			
Testing Laboratory Name:	Shenzhen AOCE Testing Technolo	gy Service Co., Ltd		
Address:	Room 202, 2nd Floor, No.12th Build Industrial Park, Fuhai Street, Baoan I Guangdong, China	· .		
Testing Location/ Procedure:	Full application of Harmonised standards Partial application of Harmonised standards			
	Other standard testing method			
Applicant's Name:	Beijing Ping An Lihe Technology De	evelopment Co., Ltd.		
Address:	Room 102, First Floor, No. 30, Hospital, 5 Jiantai Road, Chaoyang District, Beijing			
Test Specification:				
Standard:	EN 55032:2015+A11:2020; EN 61000-3-2:2019+A1:2021; EN61000-3-3:2013+A1:2019+A2:2021; EN 55035:2017+A11:2020;			
Test Report Form No:	AOCEMC-1.0			
	Shenzhen AOCE Testing Technology	y Service Co., Ltd		
Master TRF:	Dated 2011-03			
This publication may be reproduce Shenzhen AOCE Testing Technologource of the material. Shenzhen A	ed in whole or in part for non-comme logy Service Co., Ltd. is acknowled COCE Testing Technology Service Cor for damages resulting from the rement and context.	rcial purposes as long as the ged as copyright owner and ., Ltd takes no responsibility		
Test Item Description:	43-Inch Queuing Machine			
Trade Mark:	P-AN			
Model/ Type Reference:	P-GX1-B43ZXU-J1900+4+128G			
Ratings:	: Input: 110-240V~, 50/60Hz, Max:180W; Output: DC12V, 5A			
Result:	Positive			
Compiled by:	Supervised by:	Approved by:		
David Liu	Kevin Huang	Jackson Fang		

Kevin Huang/ Technique principal

EMC -- TEST REPORT

Test Report No.: AOC201013103E-R1

December 15, 2021

Date of issue

Positive

Type / Model	: P-GX1-B43ZXU-J1900+4+128G
EUT	: 43-Inch Queuing Machine
Applicant	Beijing Ping An Lihe Technology Development Co., Ltd.
Address	: Room 102, First Floor, No. 30, Hospital, 5 Jiantai Road,
	Chaoyang District, Beijing
Telephone	
Fax	: /
	Beijing Ping An Lihe Technology Development Co.,
Manufacturer	Ltd.
Address	: Room 102, First Floor, No. 30, Hospital, 5 Jiantai Road,
	Chaoyang District, Beijing
Telephone	
Fax	: /
	Dailing Ding An Like Technology Development Co
Factory	Beijing Ping An Lihe Technology Development Co., Ltd.
Address	: Room 102, First Floor, No. 30, Hospital, 5 Jiantai Road,
	Chaoyang District, Beijing
Telephone	:/
Fax	:/

The test report merely corresponds to the test sample.

Test Result according to the standards on page 7:

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS	Page
1. SUMMARY OF STANDARDS AND RESULTS	7
1.1.Description of Standards and Results	7
1.2.Description of Performance Criteria	
2. GENERAL INFORMATION	
2.1.Description of Device (EUT)	9
2.2.Description of Test Facility	
2.3. Statement of the measurement uncertainty	
2.4.Measurement Uncertainty	
3. MEASURING DEVICES AND TEST EQUIPMENT	
3.1.Conducted Disturbance	
3.2.Disturbance Power	
3.3.Radiated Electromagnetic Disturbance	
3.4.Radiated Disturbance (Electric Field)	
3.5.Harmonic Current	11
3.6.Voltage fluctuation and Flicker	11
3.7.Electrostatic Discharge	12
3.8.RF Field Strength Susceptibility	12
3.9.Electrical Fast Transient/Burst	12
3.10.Surge	12
3.11.Conducted Susceptibility	12
3.12.Power Frequency Magnetic Field Susceptibility	12
3.13.Voltage Dips	13
3.14.Voltage Short Interruptions	
4. POWER LINE CONDUCTED MEASUREMENT	14
4.1.Block Diagram of Test Setup	14
4.2.Conducted Power Line Emission Measurement Standard and Limits	14
4.3.EUT Configuration on Test	
4.4.Operating Condition of EUT	
4.5.Test Procedure	
4.6.Test Results	
5. RADIATED EMISSION MEASUREMENT	17
5.1.Block Diagram of Test Setup	
5.2.Test Standard	
5.3.Radiated Emission Limits	
5.4.EUT Configuration on Test	18
5.5.Operating Condition of EUT	
5.6.Test Procedure	
5.7.Test Results	
6. HARMONIC CURRENT MEASUREMENT	
6.1.Block Diagram of Test Setup	20

6.2.Test Standard	20
6.3.Operating Condition of EUT	20
6.4.Test Results	20
7. VOLTAGE FLUCTUATIONS & FLICKER MEASUREMENT	21
7.1.Block Diagram of Test Setup	21
7.2.Test Standard	21
7.3.Operating Condition of EUT	21
7.4.Test Results	21
8. ELECTROSTATIC DISCHARGE TEST	22
8.1.Block Diagram of Test Setup	22
8.2.Test Standard	22
8.3.Severity Levels and Performance Criterion	22
8.4.EUT Configuration on Test	22
8.5.Operating Condition of EUT	23
8.6.Test Procedure	23
8.7.Test Results	23
9. RF FIELD STRENGTH SUSCEPTIBILITY TEST	25
9.1.Block Diagram of Test Setup	25
9.2.Test Standard	
9.3.Severity Levels and Performance Criterion	25
9.4.EUT Configuration on Test	
9.5.Operating Condition of EUT	26
9.6.Test Procedure	
9.7.Test Results	
10. ELECTRICAL FAST TRANSIENT/BURST TEST	
10.1.Block Diagram of Test Setup	
10.2.Test Standard	
10.3. Severity Levels and Performance Criterion	
10.4.EUT Configuration on Test	
10.5.Operating Condition of EUT	
10.6.Test Procedure 10.7.Test Results	
11. SURGE IMMUNITY TEST	
11.1.Block Diagram of Test Setup	
11.2.Test Standard	31
11.4.EUT Configuration on Test	
11.6.Test Procedure	32
11.7.Test Results	
12. INJECTED CURRENTS SUSCEPTIBILITY TEST	
12.1.Block Diagram of Test Setup	
12.2.Test Standard	34

12.3.Severity Levels and Performance Criterion	34
12.4.EUT Configuration on Test	34
12.5.Operating Condition of EUT	35
12.6.Test Procedure	35
12.7.Test Results	35
13. MAGNETIC FIELD IMMUNITY TEST	37
13.1.Block Diagram of Test Setup	37
13.2.Test Standard	37
13.3.Severity Levels and Performance Criterion	37
13.4.EUT Configuration on Test	37
13.5.Operating Condition of EUT	38
13.6.Test Procedure	38
13.7.Test Results	38
14. VOLTAGE DIPS AND INTERRUPTIONS TEST	40
14.1.Block Diagram of Test Setup	40
14.2.Test Standard	40
14.3.Severity Levels and Performance Criterion	40
14.4.EUT Configuration on Test	40
14.5.Operating Condition of EUT	41
14.6.Test Procedure	41
14.7.Test Result	41
15. PHOTOGRAPH	43
15.1. Photo of Power Line Conducted Measurement	
15.2. Photo of Radiated Measurement	43
16. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	44

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION (EN 55032:2015+A11:2020)					
Description of Test Item Standard Limits Re					
Conducted disturbance at mains terminals	EN 55032:2015+A11:2020		Class B	PASS	
Conducted disturbance at telecommunication port	EN 55032:2015+A11:2020		Class B	N/A	
Radiated disturbance	EN 55032:2015+A11:2020		Class B	PASS	
Harmonic current emissions	EN 61000-3-2:2019+A1:202		Class A	PASS	
Voltage fluctuations & flicker	EN61000-3-3:2013+A1:2019+A2	2021		PASS	
IMN	UNITY (EN 55035:2017+A11:202	0;)			
Description of Test Item	Basic Standard		rformance Criteria	Results	
Electrostatic discharge (ESD)	EN 61000-4-2: 2009		В	PASS	
Radio-frequency, Continuous radiated disturbance	EN 61000-4-3: 2006+A1: 201	0	А	PASS	
Electrical fast transient (EFT)	EN 61000-4-4: 2012		В	PASS	
Surge (Input a.c. power ports)	EN 61000-4-5: 2014+A1: 201	7	В	PASS	
Surge (Telecommunication ports)	EN 61000-4-5. 2014+A1. 2017		В	N/A	
Radio-frequency, Continuous conducted disturbance	EN 61000-4-6: 2014+AC: 201	5	Α	PASS	
Power frequency magnetic field	EN 61000-4-8: 2010		Α	PASS	
Voltage dips, >95% reduction			С	PASS	
Voltage dips, 30% reduction	EN 61000-4-11: 2004+A1: 201	7	С	PASS	
Voltage interruptions			С	PASS	
N/A is an abbreviation for Not Applicable.					

1.2.Description of Performance Criteria

General Performance Criteria

Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following:

- essential operational modes and states;
- tests of all peripheral access (hard disks, floppy disks, printers, keyboard, mouse, etc.);
- quality of software execution;
- quality of data display and transmission;
- quality of speech transmission.

1.2.1.Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacture when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.2.Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacture, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operation state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.3.Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacture's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be loss.

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

EUT : 43-Inch Queuing Machine

Model Number : P-GX1-B43ZXU-J1900+4+128G

Power Supply : Input: 110-240V~, 50/60Hz, Max:180W; Output: DC12V, 5A

2.2.Description of Test Facility EMC Lab.

2.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AOC quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.4. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty		30MHz~200MHz	±2.96dB	(1)
	•	200MHz~1000MHz	±3.10dB	(1)
Conduction Uncertainty :	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty confidence level using a coverage factor of k=2.	expressed at approximately the 95
communication assume a contenting a contenting of the 2.	

Page 10 of 44

3. MEASURING DEVICES AND TEST EQUIPMENT

3.1.Conducted Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2020/06/18
2	10dB Attenuator	SCHWARZBECK	OSPAM236	9729	2020/06/18
3	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2020/06/18
4	EMI Test Software	AUDIX	E3	N/A	2020/06/18

3.2.Disturbance Power

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2020/06/18
2	Absorbing clamp	ROHDE & SCHWARZ	MDS 21	4033	2020/06/18
3	EMI Test Software	AUDIX	E3	N/A	2020/06/18
4	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2020/06/18

3.3.Radiated Electromagnetic Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	1011423	2020/06/18
2	Triple-loop Antenna	EVERFINE	LLA-2	11050003	2020/06/18
3	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2020/06/18
4	EMI Test Software	AUDIX	E3	N/A	2020/06/18

3.4. Radiated Disturbance (Electric Field)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2020/06/18
2	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2020/06/18
3	Log per Antenna	SCHWARZBECK	VULB9163	9163-470	2020/06/18
4	EMI Test Software	AUDIX	E3	N/A	2020/06/18
5	Positioning Controller	MF	MF-7082	/	2020/06/18
6	Horn Antenna	ETS.LINDGREN	3115	00034771	2020/06/18
7	Spectrum Analyzer	Agilent	E4407B	MY41440754	2020/06/18

3.5. Harmonic Current

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power Analyzer Test System	Voltech	PM6000	20000670053	2020/06/18

3.6. Voltage fluctuation and Flicker

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power Analyzer Test System	Voltech	PM6000	20000670053	2020/06/18

3.7. Electrostatic Discharge

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	ESD Simulator	KIKUSUI	KC001311	KES4021	2020/06/18

3.8.RF Field Strength Susceptibility

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	SIGNAL GENERATOR	HP	8648A	625U00573	2020/06/18
2	Amplifier	AR	500A100	17034	2020/06/18
3	Amplifier	AR	100W/1000M1	17028	2020/06/18
4	Isotropic Field Monitor	AR	FM2000	16829	2020/06/18
5	Isotropic Field Probe	AR	FP2000	16755	2020/06/18
6	Bi-conic Antenna	EMCO	3108	9507-2534	2020/06/18
7	By-log-periodic Antenna	AR	AT1080	16812	2020/06/18
8	EMS Test Software	ROHDE & SCHWARZ	ESK1	N/A	2020/06/18

3.9. Electrical Fast Transient/Burst

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Electrical fast transient(EFT)generator	3CTEST	EFT-4021	EC0461044	2020/06/18
2	Coupling Clamp	3CTEST	EFTC	EC0441098	2020/06/18

3.10.Surge

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Surge test system	3CTEST	SG5006G	EC5581070	2020/06/18
2	Coupling/decoupling network	3CTEST	SGN-5010G	CS5591033	2020/06/18

3.11.Conducted Susceptibility

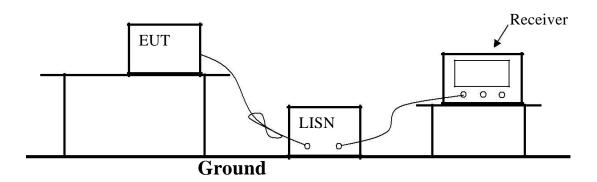
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Simulator	EMTEST	CIT-10	A126A1195	2020/06/18
2	CDN	EMTEST	CDN-M2	A2210177	2020/06/18
3	CDN	EMTEST	CDN-M3	A2210177	2020/06/18
4	Attenuator	EMTEST	ATT6	50FP-006-H3B	2020/06/18

3.12. Power Frequency Magnetic Field Susceptibility

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power frequency mag-field generator	EVERFINE	EMS61000-8K	906003	2020/06/18

System		

3.13. Voltage Dips


Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2020/06/18

3.14. Voltage Short Interruptions

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2020/06/18

4. POWER LINE CONDUCTED MEASUREMENT

4.1.Block Diagram of Test Setup

4.2. Conducted Power Line Emission Measurement Standard and Limits

4.2.1.Standard:

EN 55032:2015+A11:2020

4.2.2.Limits

Frequency	At mains terminals (dBµV)				
Trequency	Quasi-peak Level	Average Level			
0.15MHz ~ 0.50MHz	66 ~ 56*	56 ~ 46*			
0.50MHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

4.3.EUT Configuration on Test

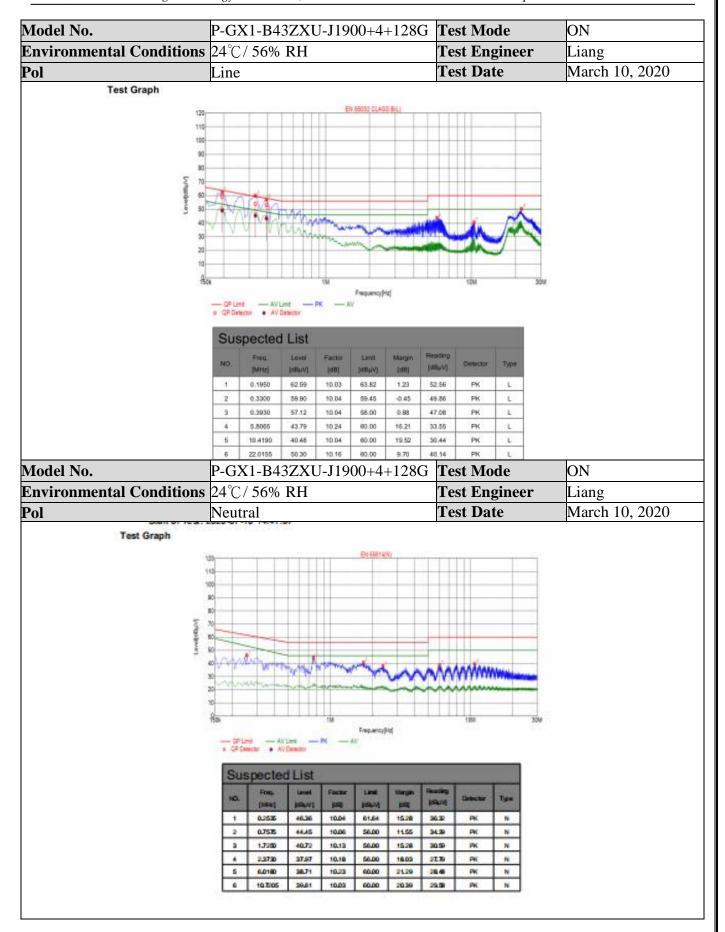
The following equipments are installed on Conducted Emission Measurement to see EN 55032 requirements and operating in a manner which tends to maximize its emission characteristics in normal application.

4.4.Operating Condition of EUT

- 4.4.1. Setup the EUT as shown in Section 4.1.
- 4.4.2. Turn on the power of all equipments.
- 4.4.3.Let the EUT work in test mode (On) and measure it.

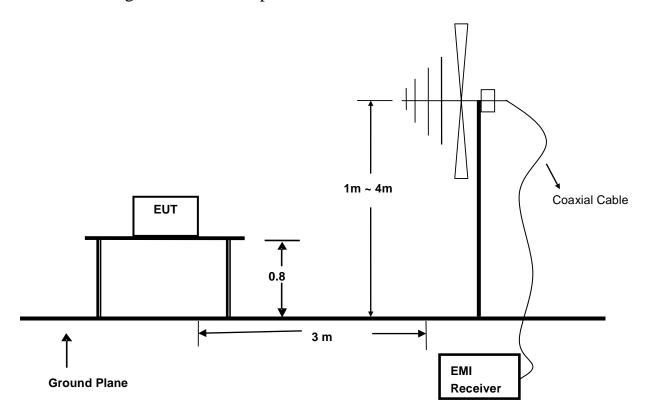
4.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided 50-ohm coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the EN 55032 regulations during conducted emission measurement.


The bandwidth of the field strength meter is set at 9kHz in 150kHz~30MHz.

The frequency range from 150kHz to 30MHz is investigated

4.6.Test Results


PASS.

The test result please refer to the next page.

5. RADIATED EMISSION MEASUREMENT

5.1.Block Diagram of Test Setup

5.2.Test Standard

EN 55032:2015+A11:2020

5.3. Radiated Emission Limits

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT
(MHz)	(Meters)	$(dB\mu V/m)$
30 ~ 230	3	40
230 ~ 1000	3	47

Note: (1) The smaller limit shall apply at the combination point between two frequency bands.

(2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

5.4.EUT Configuration on Test

The EN 55032 regulations test method must be used to find the maximum emission during radiated emission measurement.

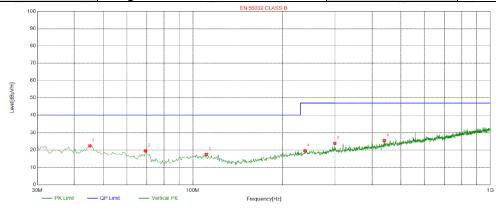
5.5. Operating Condition of EUT

- 5.5.1 Turn on the power.
- 5.5.2 After that, let the EUT work in test mode (ON) and measure it.

5.6.Test Procedure

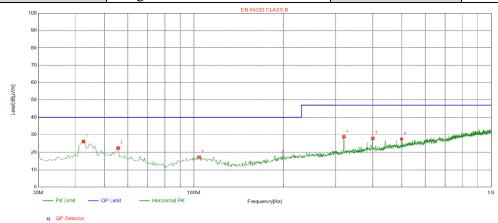
The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 10 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna (calibrated by Dipole Antenna) is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.


The bandwidth of the Receiver is set at 120kHz.

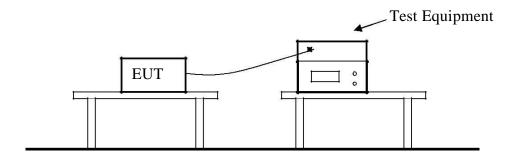

The frequency range from 30MHz to 1000MHz is investigated.

5.7.Test Results

PASS.


The test result please refer to the next page.

Suspected List								
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	45.0350	22.33	-13.65	40.00	17.67	100	137	Vertical
2	69.2850	19.56	-17.49	40.00	20.44	100	212	Vertical
3	110.995	17.52	-15.60	40.00	22.48	100	107	Vertical
4	238.065	19.60	-13.94	47.00	27.40	100	0	Vertical
5	300.145	23.87	-12.73	47.00	23.13	100	348	Vertical
6	440.310	25.43	-9.41	47.00	21.57	100	345	Vertical


Model No.	P-GX1-B43ZXU-J1900+4+128G	Test Mode	ON
Environmental Conditions	24℃/ 56% RH	Detector Function	Quasi-peak
Pol	Horizontal	Distance	3m
Test Engineer	Liang	Test Date	March 10, 2020

Susp	Suspected List								
NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	42.6100	26.18	-14.08	40.00	13.82	100	60	Horizontal	
2	55.7050	22.54	-14.51	40.00	17.46	100	250	Horizontal	
3	104.205	17.42	-15.41	40.00	22.58	100	182	Horizontal	
4	320.030	28.77	-12.10	47.00	18.23	100	311	Horizontal	
5	400.055	27.91	-10.40	47.00	19.09	100	15	Horizontal	
6	499.965	27.44	-8.30	47.00	19.56	100	63	Horizontal	

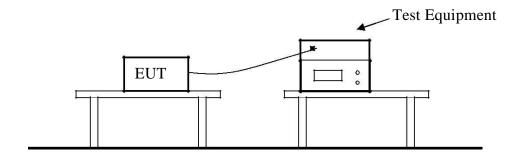
6. HARMONIC CURRENT MEASUREMENT

6.1.Block Diagram of Test Setup

6.2.Test Standard

EN 61000-3-2:2019+A1:2021

6.3. Operating Condition of EUT


Same as Section 4.4. except the test setup replaced by Section 7.1.

6.4.Test Results

PASS.

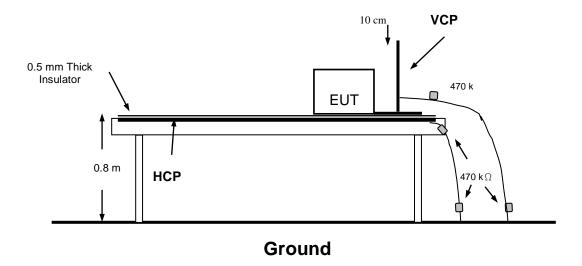
7. VOLTAGE FLUCTUATIONS & FLICKER MEASUREMENT

7.1.Block Diagram of Test Setup

7.2.Test Standard

EN61000-3-3:2013+A1:2019+A2:2021

7.3. Operating Condition of EUT


Same as Section 4.4. except the test setup replaced by Section 8.1.

7.4.Test Results

PASS.

8. ELECTROSTATIC DISCHARGE TEST

8.1.Block Diagram of Test Setup

8.2.Test Standard

EN 55035:2017+A11:2020 (EN 61000-4-2: 2009, Severity Level: Air Discharge: Level 3, \pm 8KV Contact Discharge: Level 2, \pm 4KV)

8.3. Severity Levels and Performance Criterion

8.3.1.Severity level

Level	Test Voltage	Test Voltage
	Contact Discharge (KV)	Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
X	Special	Special

8.3.2.Performance criterion: **B**

8.4.EUT Configuration on Test

The configuration of EUT is listed in Section 3.7.

8.5. Operating Condition of EUT

- 8.5.1. Setup the EUT as shown in Section 6.1.
- 8.5.2. Turn on the power of all equipments.
- 8.5.3.Let the EUT work in test mode (ON) and measure it.

8.6.Test Procedure

8.6.1.Air Discharge

This test is done on a non-conductive surfaces. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

Because the case of the EUT is metal surface, so it does not need to be tested.

8.6.2.Contact Discharge

All the procedure shall be same as Section 6.6.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

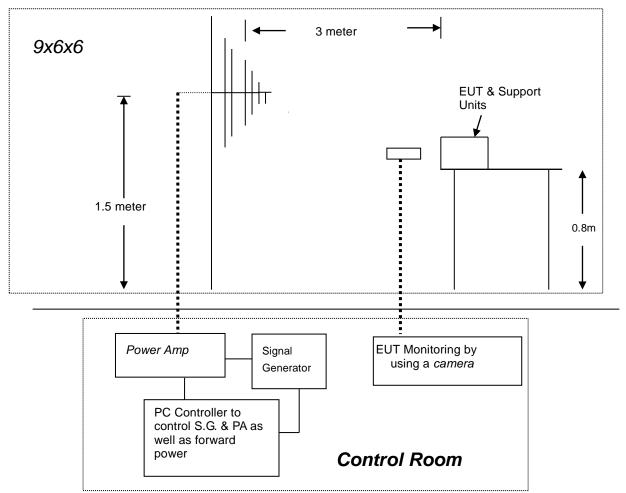
8.6.3.Indirect Discharge For Horizontal Coupling Plane

At least 20 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

8.6.4.Indirect Discharge For Vertical Coupling Plane

At least 20 single discharge shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

8.7.Test Results


PASS.

Electrostatic Discharger Test Results							
Standard	Standard □ IEC 61000-4-2 ☑ EN 61000-4-2						
Applicant	Beijing Ping	An Lihe T	echnology De	velo	pment (Co., Ltd.	
EUT	43-Inch Queuing Machine				Temp	erature	26℃
M/N	P-GX1-B43Z	XU-J1900	0+4+128G		Humi	dity	51%
Criterion	В				Pressu	ıre	1021mbar
Test Mode ON				Test E	Engineer	Liang	
Air Discharge							
				; 		Do	14-a
T (D) (Test Level	IS		Results		
Test Points	± 2KV	± 4KV	± 8KV		Pass	Fail	Performance

					0	
Air Discharge						
		Test Levels		Results		
Test Points	± 2KV	± 4KV	± 8KV	Pass	Fail	Performance Criterion
Front		\boxtimes	\boxtimes	\boxtimes		$\square A \boxtimes B$
Back		\boxtimes	\boxtimes	\boxtimes		\Box A \boxtimes B
Left		\boxtimes	\boxtimes	\boxtimes		\Box A \boxtimes B
Right		\boxtimes	\boxtimes	\boxtimes		\Box A \boxtimes B
Top	\boxtimes		\boxtimes	\boxtimes		\Box A \boxtimes B
Bottom		\boxtimes	\boxtimes	\boxtimes		\Box A \boxtimes B
		Con	tact Dischar	rge		
		Test Levels			Resu	
Test Points	± 2 KV		±4 KV	Pass	Fail	Performance Criterion
Front			\boxtimes	\boxtimes		$\square A \boxtimes B$
Back	\boxtimes		\boxtimes	\square		\Box A \boxtimes B
Left	\boxtimes		\boxtimes	\boxtimes		\Box A \boxtimes B
Right	\square		\boxtimes	\square		\Box A \boxtimes B
Тор	\boxtimes		\boxtimes	\boxtimes		\Box A \boxtimes B
Bottom	\square		\boxtimes	\boxtimes		$\Box A \boxtimes B$
	Disc		lorizontal C	oupling Pla		
		Test Levels			Resu	
Side of EUT	± 2 KV		± 4 KV	Pass	Fail	Performance Criterion
Front			\boxtimes	\boxtimes		$\square A \boxtimes B$
Back	\boxtimes		\boxtimes	\boxtimes		$\Box \mathbf{A} \boxtimes \mathbf{B}$
Left			\boxtimes	\square		$\Box A \boxtimes B$
Right	\boxtimes		\boxtimes	\square		\Box A \boxtimes B
	Dis		Vertical Co	upling Plan		
		Test Levels		Results		
Side of EUT	± 2 KV		± 4 KV	Pass	Fail	Performance Criterion
Front	\boxtimes		\boxtimes			$\Box A \boxtimes B$
Back	\square		\boxtimes			$\Box A \boxtimes B$
Left	\boxtimes		\boxtimes			\Box A \boxtimes B
Right	\boxtimes		\boxtimes			$\square A \boxtimes B$

9. RF FIELD STRENGTH SUSCEPTIBILITY TEST

9.1.Block Diagram of Test Setup

9.2.Test Standard

EN 55035:2017+A11:2020 (EN 61000-4-3: 2006+A1: 2010, Severity Level: 2, 3V / m)

9.3. Severity Levels and Performance Criterion

9.3.1.Severity level

Level	Field Strength (V/m)
1	1
2	3
3	10
X	Special

9.3.2.Performance criterion: A

9.4.EUT Configuration on Test

The configuration of EUT are listed in Section 2.1.

9.5. Operating Condition of EUT

- 9.5.1. Setup the EUT as shown in Section 7.1.
- 9.5.2. Turn on the power of all equipments.
- 9.5.3.Let the EUT work in test mode (On) and measure it.

9.6.Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

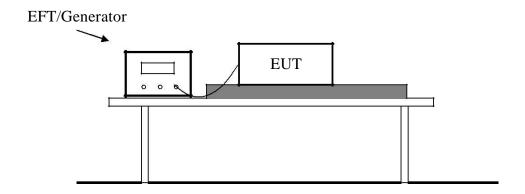
	Condition of Test	Remarks
1.	Fielded Strength	3 V/m (Severity Level 2)
2.	Radiated Signal	Unmodulated
3.	Scanning Frequency	80 - 1000 MHz
4.	Dwell time of radiated	0.0015 decade/s
5.	Waiting Time	3 Sec.

9.7.Test Results

PASS.

RF Field Strength Susceptibility Test Results ☐ IEC 61000-4-3 ☑ EN 61000-4-3 Standard Beijing Ping An Lihe Technology Development Co., Ltd. **Applicant EUT Temperature** 26°C 43-Inch Queuing Machine 51% M/N P-GX1-B43ZXU-J1900+4+128G Humidity **Field Strength** 3 V/m Criterion A ON Liang **Test Mode Test Engineer** 80 MHz to 1000 MHz **Frequency Range Modulation** □None □ Pulse ☑AM 1KHz 80% **Steps** 1%

	Horizontal	Vertical
Front	PASS	PASS
Right	PASS	PASS
Rear	PASS	PASS
Left	PASS	PASS


Test Equipment:

- 1. Signal Generator: 2031 (MARCONI)
- 2. Power Amplifier: 500A100 & 100W/1000M1 (A&R)
- 3. Power Antenna: 3108 (EMCO) & AT1080 (A&R)
- 4. Field Monitor: FM2000 (A&R)

Note:

10. ELECTRICAL FAST TRANSIENT/BURST TEST

10.1.Block Diagram of Test Setup

10.2.Test Standard

EN 55035:2017+A11:2020 (EN 61000-4-4: 2012, Severity Level: Level 2: 1KV) 10.3. Severity Levels and Performance Criterion

10.3.1. Severity level

	Open Circuit Output Test Voltage ±10%				
Level	On Power Supply	On I/O (Input/Output)			
	Lines	Signal data and control lines			
1.	0.5 KV	0.25 KV			
2.	1 KV	0.5 KV			
3.	2 KV	1 KV			
4.	4 KV	2 KV			
X.	Special	Special			

10.3.2.Performance criterion: **B**

10.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.9.

10.5. Operating Condition of EUT

- 10.5.1. Setup the EUT as shown in Section 11.1.
- 10.5.2. Turn on the power of all equipments.
- 10.5.3.Let the EUT work in test mode (ON) and measure it.

10.6.Test Procedure

The EUT is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

10.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

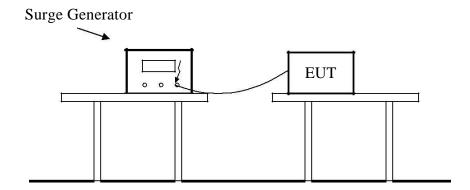
10.6.2. For signal lines and control lines ports:

No I/O ports. It's unnecessary to test.

10.6.3. For DC output line ports:

It's unnecessary to test.

10.7.Test Results


PASS.

Electrical Fast Transient/Burst Test Results						
Standard	Standard □ IEC 61000-4-4 □ EN 61000-4-4					
Applicant	Applicant Beijing Ping An Lihe Technology Development Co., Ltd.					
EUT	43-Inch Queuing Machine	Temperature	26℃			
M/N	P-GX1-B43ZXU-J1900+4+128G	Humidity	51%			
CriterionBPressure1021mbar						
Test Mode	ON	Test Engineer	Liang			

Line	Test Voltage	Result (+)	Result (-)
L	1KV	PASS	PASS
N	1KV	PASS	PASS
PE	1KV	PASS	PASS
L-N	1KV	PASS	PASS
L-PE	1KV	PASS	PASS
N-PE	1KV	PASS	PASS
L-N-PE	1KV	PASS	PASS
Signal Line			
I/O Cable			

11. SURGE IMMUNITY TEST

11.1.Block Diagram of Test Setup

11.2.Test Standard

EN 55035:2017+A11:2020 (EN61000-4-5: 2014+A1: 2017, Severity Level: Line to

Line: Level 2, 1.0KV; Line to Earth: Level 3, 2.0KV)

11.3. Severity Levels and Performance Criterion

11.3.1. Severity level

cverity icver	
Severity Level	Open-Circuit Test Voltage
	(KV)
1	0.5
2	1.0
3	2.0
4	4.0
*	Special

11.3.2.Performance criterion: **B**

11.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.10.

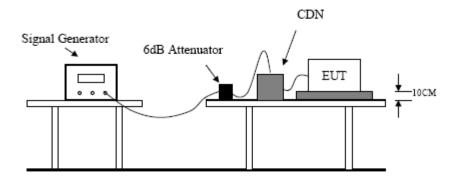
11.5. Operating Condition of EUT

- 11.5.1. Setup the EUT as shown in Section 12.1.
- 11.5.2. Turn on the power of all equipments.
- 11.5.3.Let the EUT work in test mode (ON) and measure it.

11.6.Test Procedure

- 11.6.1. Set up the EUT and test generator as shown on Section 12.1.
- 11.6.2. For line to line coupling mode, provide a0.5 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 11.6.3.At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 11.6.4. Different phase angles are done individually.
- 11.6.5.Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.7.Test Results


PASS.

Electrical Fast Transient/Burst Test Results			
Standard	☐ IEC 61000-4-5		
Applicant	Beijing Ping An Lihe Technology Development Co., Ltd.		
EUT	43-Inch Queuing Machine Temperature 26°C		
M/N	P-GX1-B43ZXU-J1900+4+128G Humidity 51%		
Criterion	B Pressure 1		1021mbar
Test Mode	ON	Test Engineer	Liang

Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result
L-N	+	00	5	1.0	PASS
	+	90°	5	1.0	PASS
	+	180°	5	1.0	PASS
	+	270°	5	1.0	PASS
	-	0°	5	1.0	PASS
	-	90°	5	1.0	PASS
	-	180°	5	1.0	PASS
	-	270°	5	1.0	PASS
L-PE	+	00	5	2.0	PASS
	+	90°	5	2.0	PASS
	+	180°	5	2.0	PASS
	+	270°	5	2.0	PASS
	-	00	5	2.0	PASS
	-	90°	5	2.0	PASS
	-	180°	5	2.0	PASS
	-	270°	5	2.0	PASS
N-PE	+	0°	5	2.0	PASS
	+	90°	5	2.0	PASS
	+	180°	5	2.0	PASS
	+	270°	5	2.0	PASS
	-	0°	5	2.0	PASS
	-	90°	5	2.0	PASS
	-	180°	5	2.0	PASS
	-	270°	5	2.0	PASS
Signal Line					

12. INJECTED CURRENTS SUSCEPTIBILITY TEST

12.1.Block Diagram of Test Setup

12.2.Test Standard

EN 55035:2017+A11:2020(EN 61000-4-6: 2014, Severity Level: 3V (rms), 0.15MHz ~ 80MHz)

12.3. Severity Levels and Performance Criterion

12.3.1.Severity level

Level	Field Strength (V)
1.	1
2.	3
3.	10
X	Special

12.3.2.Performance criterion: A

12.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.11.

12.5. Operating Condition of EUT

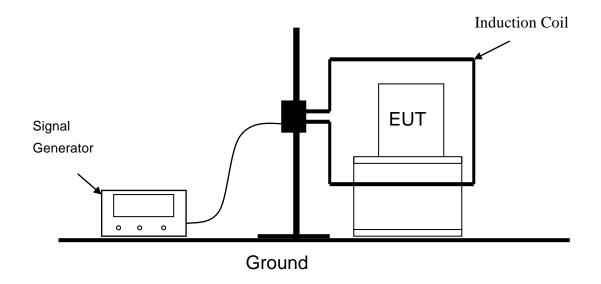
- 12.5.1. Setup the EUT as shown in Section 13.1.
- 12.5.2. Turn on the power of all equipments.
- 12.5.3.Let the EUT work in test mode (ON) and measure it.

12.6.Test Procedure

- 12.6.1. Set up the EUT, CDN and test generators as shown on Section 13.1.
- 12.6.2.Let the EUT work in test mode and measure it.
- 12.6.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 12.6.4. The disturbance signal described below is injected to EUT through CDN.
- 12.6.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 12.6.6. The frequency range is swept from 150kHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- 12.6.7. The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 12.6.8.Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

12.7.Test Results

PASS.


Injected Currents Susceptibility Test Results				
Standard	□ IEC 61000-4-6			
Applicant	Beijing Ping An Lihe Technology Development Co., Ltd.			
EUT	43-Inch Queuing Machine	Temperature	26°C	
M/N	P-GX1-B43ZXU-J1900+4+128G	Humidity	51%	
Test Mode	Normal	Criterion	A	
Test Engineer	Liang	Test Date	March 10, 2020	

Frequency Range (MHz)	Injected Position	Strength (Unmodulated)	Criterion	Result
0.15 ~ 80	AC Mains	3V	A	PASS
Remark: Modulation Signal:1kHz 80% AM				

Modulation Signal:1kHz 80% AM				
Note:				

13. MAGNETIC FIELD IMMUNITY TEST

13.1.Block Diagram of Test Setup

13.2.Test Standard

EN 55035:2017+A11:2020 (EN 61000-4-8: 2010, Severity Level 2: 3A/m)

13.3. Severity Levels and Performance Criterion

13.3.1.Severity level

.Beverity rever		
Level	Magnetic Field Strength (A/m)	
1.	1	
2.	3	
3.	10	
4.	30	
5.	100	
X	Special	

13.3.2.Performance criterion: A

13.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.12.

13.5. Operating Condition of EUT

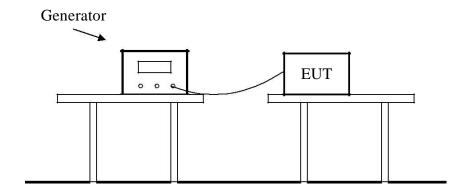
- 13.5.1. Setup the EUT as shown in Section 13.1.
- 13.5.2. Turn on the power of all equipments.
- 13.5.3.Let the EUT work in test mode (On) and measure it.

13.6.Test Procedure

- 13.6.1.Set up the EUT system as shown on Section 13.1.
- 13.6.2. The Induction coil is set up in horizontal or vertical.
- 13.6.3.Let the EUT work in test mode and measure it.

13.7.Test Results

PASS.


Magnetic Field Immunity Test Result				
Standard	☐ IEC 61000-4-8			
Applicant	Beijing Ping An Lihe Technology Development Co., Ltd.			
EUT	43-Inch Queuing Machine Temperature 26°C			
M/N	P-GX1-B43ZXU-J1900+4+128G Humidity 51%			
Test Mode	Normal Criterion A			
Test Engineer	Liang	Test Date	March 10, 2020	

Test Level (A/M)	Testing Duration	Coil Orientation	Criterion	Result
3	5 mins	X	A	PASS
3	5 mins	Y	A	PASS
3	5 mins	Z	A	PASS

Note:

14. VOLTAGE DIPS AND INTERRUPTIONS TEST

14.1.Block Diagram of Test Setup

14.2.Test Standard

EN 55035:2017+A11:2020 (EN 61000-4-11: 2004+A1: 2017)

14.3. Severity Levels and Performance Criterion

14.3.1. Severity level

Test Level (%U _T)	Voltage dip and short Interruptions (%U _T)	Duration (in period)
0	100	0.5
70	30	10

14.3.2.Performance criterion: **B&C**

14.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.13&3.14.

14.5. Operating Condition of EUT

- 14.5.1. Setup the EUT as shown in Section 15.1.
- 14.5.2. Turn on the power of all equipments.
- 14.5.3.Let the EUT work in test mode (ON) and measure it.

14.6.Test Procedure

- 14.6.1. Set up the EUT and test generator as shown on Section 15.1.
- 14.6.2. The interruptions is introduced at selected phase angles with specified duration.
- 14.6.3.Record any degradation of performance.

14.7.Test Result

PASS.

Magnetic Field Immunity Test Result					
Standard	□ IEC 61000-4-11 ☑ EN 61000-4-11				
Applicant	Beijing Ping An Lihe Technology Development Co., Ltd.				
EUT	43-Inch Queuing Machine	Temperature	26℃		
M/N	P-GX1-B43ZXU-J1900+4+128G	Humidity	51%		
Test Mode	Normal	Criterion	A		
Test Engineer	Liang	Test Date	March 10, 2020		

Test Level % U _T	Voltage Dips & Short Interruptions % U _T	Duration	Criterion	Result
0	100	0.5P	В	PASS
70	30	10P	С	PASS

Note:

15. PHOTOGRAPH

15.1.Photo of Power Line Conducted Measurement

15.2.Photo of Radiated Measurement

16. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

Fig. 2 -----THE END OF REPORT-----